Exposure judgments made without personal exposure data and based instead on subjective inputs tend to underestimate exposure, with exposure judgment accuracy not significantly more accurate than random chance. Therefore, objective inputs that contribute to more accurate decision making are needed. Models have been shown anecdotally to be useful in accurately predicting exposure but their use in occupational hygiene has been limited. This may be attributable to a general lack of guidance on model selection and use and scant model input data. The lack of systematic evaluation of the models is also an important factor. This research addresses the need to systematically evaluate two widely applicable models, the Well-Mixed Room (WMR) and Near-Field-Far-Field (NF-FF) models. The evaluation, conducted under highly controlled conditions in an exposure chamber, allowed for model inputs to be accurately measured and controlled, generating over 800 pairs of high quality measured and modeled exposure estimates. By varying conditions in the chamber one at a time, model performance across a range of conditions was evaluated using two sets of criteria: the ASTM Standard 5157 and the AIHA Exposure Assessment categorical criteria. Model performance for the WMR model was excellent, with ASTM performance criteria met for 88-97% of the pairs across the three chemicals used in the study, and 96% categorical agreement observed. Model performance for the NF-FF model, impacted somewhat by the size of the chamber was nevertheless good to excellent. NF modeled estimates met modified ASTM criteria for 67-84% of the pairs while 69-91% of FF modeled estimates met these criteria. Categorical agreement was observed for 72% and 96% of NF and FF pairs, respectively. These results support the use of the WMR and NF-FF models in guiding decision making towards improving exposure judgment accuracy.
Alginate extracted from widely cultured brown seaweed can be hydrolyzed by alginate lyase to produce alginate oligosaccharides (AOS) with intriguing biological activities. Herein, a novel alginate lyase Aly1281 was cloned from marine bacterium Pseudoalteromonas carrageenovora ASY5 isolated from mangrove soil and found to belong to polysaccharide lyase family 7. Aly1281 exhibited maximum activity at pH 8.0 and 50 °C and have broad substrate specificity for polyguluronate and polymannuronate. Compared with other alginate lyases, Aly1281 exhibited high degradation specificity and mainly produced di-alginate oligosaccharides which displayed good antioxidant function to reduce ferric and scavenge radicals such as hydroxyl, ABTS+ and DPPH. Moreover, the catalytic activity and kinetic performance of Aly1281 were highly improved with the addition of salt, demonstrating a salt-activation property. A putative conformational structural feature of Aly1281 was found by MD simulation analysis for understanding the salt-activation effect.
Tannase is widely used in tea beverage processing because of its ability to catalyze the hydrolysis of hydrolysable tannins or gallic acid esters and effectively improve the quality of tea extracts through enzymatic extraction. A new thermophilic tannase was cloned from Aspergillus niger FJ0118 and characterized. The tannase exhibited an optimal reaction temperature of 80 °C and retained 89.6% of the initial activity after incubation at 60 °C for 2 h. The enzymatic extraction of green tea at high temperature (70 °C) for a short time (40 min) was devised on the basis of the superior thermal stability of tannase. The enzymatic reaction significantly increased the total polyphenol content of green tea extract from 137 g·kg−1 to 291 g·kg−1. The enzymatic reaction effectively degraded the ester catechins into non-ester catechins compared with the water extraction method. Results suggested that the thermally stable tannase exhibited potential applications in the enzymatic extraction of green tea beverage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.