The aim of this study was to evaluate the efficacy and safety of femtosecond laser-assisted cataract surgery (FLACS) versus conventional phacoemulsification cataract surgery (CPCS) in the treatment of cataract. Randomized controlled trials (RCTs) were searched in PubMed, Embase and the Cochrane Central Register of Controlled Trials. Nine qualified studies with a total of 989 eyes were included. Compared with CPCS, FLACS significantly reduced mean phaco energy and effective phacoemulsification time (EPT) required in the surgery. Central corneal thickness (CCT) was significantly lower in FLACS at 1 day of follow-up, but CCT and corneal endothelial cells count was comparable at 1 week of follow-up or longer. FLACS achieved a better visual outcome at postoperative 1 week and 6 months, but the difference was not significant at postoperative 1–3 months. Regard to surgical complications, the incidences of intraoperative anterior capsule tear, postoperative macular edema and elevated intraocular pressure were similar. In conclusion, femtosecond laser pretreatment can reduce phaco energy and EPT, which may reduce the heat damage to ocular tissues by ultrasound. This novel technique might be beneficial for patients with dense cataract and/or low preoperative endothelial cell values. Well-designed RCTs with longer follow-up are still necessary to provide more reliable evidence.
Fibrosis is a chronic process involving development and progression of multiple
diseases in various organs and is responsible for almost half of all known deaths.
Epithelial–mesenchymal transition (EMT) is the vital process in organ fibrosis.
Lens is an elegant biological tool to investigate the fibrosis process because of its
unique biological properties. Using gain- and loss-of-function assays, and different
lens fibrosis models, here we demonstrated that microRNA (miR)-26a and miR-26b,
members of the miR-26 family have key roles in EMT and fibrosis. They can
significantly inhibit proliferation, migration, EMT of lens epithelial cells and lens
fibrosis in vitro and in vivo. Interestingly, we revealed that the
mechanisms of anti-EMT effects of miR-26a and -26b are via directly targeting
Jagged-1 and suppressing Jagged-1/Notch signaling. Furthermore, we provided
in vitro and in vivo evidence that Jagged-1/Notch signaling
is activated in TGFβ2-stimulated EMT, and blockade of Notch signaling
can reverse lens epithelial cells (LECs) EMT and lens fibrosis. Given the general
involvement of EMT in most fibrotic diseases, cancer metastasis and recurrence,
miR-26 family and Notch pathway may have therapeutic uses in treating fibrotic
diseases and cancers.
The proliferation and epithelial–mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells are the major pathological changes in development of proliferative vitreoretinopathy (PVR), which leads to severe visual impairment. Histone deacetylases (HDACs)-mediated epigenetic mechanisms play important roles in controlling various physiological and pathological events. However, whether HDACs are involved in the regulation of proliferation and EMT in PRE cells remains unidentified. In this study, we evaluated the expression profile of HDAC family (18 genes) and found that some of class I and class II HDACs were up-regulated in transforming growth factor-β2 (TGF-β2)/TGF-β1-stimulated RPE cells. Tricostatin A (TSA), a class I and II HDAC inhibitor, suppressed the proliferation of RPE cells by G1 phase cell cycle arrest through inhibition of cyclin/CDK/p-Rb and induction of p21 and p27. In the meantime, TSA strongly prevented TGF-β2–induced morphological changes and the up-regulation of α-SMA, collagen type I, collagen type IV, fibronectin, Snail and Slug. We also demonstrated that TSA affected not only the canonical Smad signalling pathway but also the non-canonical TGF-β/Akt, MAPK and ERK1/2 pathways. Finally, we found that the underlying mechanism of TSA affects EMT in RPE cells also through down-regulating the Jagged/Notch signalling pathway. Therefore, this study may provide a new insight into the pathogenesis of PVR, and suggests that epigenetic treatment with HDAC inhibitors may have therapeutic value in the prevention and treatment of PVR.
Epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells is a major pathologic change in the development of proliferative vitreoretinopathy (PVR), which leads to severe visual impairment. ERK1/2 pathway has been reported to play a key role in the carcinogenesis, cancer metastasis, and multiple fibrotic diseases. We hypothesized that ERK1/2 signaling could cross-interact with transforming growth factor β2 (TGFβ2)/Smad and Notch signaling pathways in the regulation of EMT in RPE cells. Here, we demonstrated that ERK1/2 signaling was activated in TGFβ2-induced EMT in human RPE cells, while blockade of the canonical TGFβ2/Smad2/3 signaling with SB431542 could not inhibit TGFβ2-induced the activation of ERK1/2. Meanwhile, blockade of ERK1/2 signaling with a specific MEK/ERK1/2 inhibitor U0126 strongly prevented TGFβ2-induced the downregulation of P-cadherin, and the upregulation of α-SMA, collagen type IV, N-cadherin and fibronectin in RPE cells. In addition, we also identified that blockade of ERK1/2 signaling could inhibit not only the canonical TGFβ/Smad signaling, but also the Jagged/Notch pathway. Finally, we found that blockade of Notch pathway with a specific inhibitor DAPT could inhibit TGFβ2-induced the activation of ERK1/2 pathway conversely. Therefore, our study provides evidence that ERK1/2 signaling can cross-interact with the canonical TGFβ/Smad and the Jagged/Notch signaling pathways in RPE cells EMT. ERK1/2 inhibitor may have therapeutic value in the prevention and treatment of PVR and other fibrotic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.