A novel dual Fabry–Pérot (F-P) interferometric carbon monoxide gas sensor based on polyaniline/Co3O4(PANI/Co3O4) sensing film coated on the optical fibre end face is proposed and fabricated. Its structure is composed of standard single-mode-fibre (SMF), endlessly photonic crystal fibre (EPCF), and PANI/Co3O4sensing membrane (PCSM). Therefore, they form three F-P reflectors, the reflector between SMF and EPCF, that between EPCF and PCSM, and interface between PCSM and air. So, the dual F-P interferometer is achieved. The results show that in the range of 0–70 ppm, the interference spectra appear red shift with the increasing carbon monoxide concentration. In addition, the high sensitivity of 21.61 pm/ppm, the excellent linear relationship (R2= 0.98476), and high selectivity for carbon monoxide are achieved. The response and recovery time are 35 and 84 s, respectively. The sensor has the advantages of high sensitivity, strong selectivity, low cost, and simple structure and is suitable for sensitive detection of trace carbon monoxide gas.
A highly sensitive hydrogen sulfide gas sensor based on NH2-rGO-coated thin-core-fibre (TCF) Michelson interferometer (MI) is proposed and evaluated. Two sections of TCFs are alternately sandwiched between three single-mode-fibres (SMFs). A Faraday rotator mirror (FRM) is fixed to the end of the last SMF to reflect the light signal and enhance the interference. Then the structure SMF-TCF-SMF-TCF-SMF-FRM (STSTS-F) is successfully constructed. NH2-rGO, as sensing film, is coated on two TCFs and is used to detect traces of hydrogen sulfide gas. Raman spectra and XPS analysis show that NH2-rGO has been successfully synthesised. The thickness of the NH2-rGO film coated on the TCF surface is about 500 nm. By introducing 0–60 ppm hydrogen sulfide gas into the chamber, with the increase in concentration of the gas, the monitoring trough exhibits a blue shift. Our experimental results show that the sensor has good linearity (R2 = 0.98096) and selectivity for hydrogen sulfide gas. The sensitivity is 21.3 pm/ppm, and the response and recovery times are about 72 and 90 s, respectively. The sensor has the advantages of high sensitivity, high selectivity, and small size, enabling the detection of trace hydrogen sulfide in toxic gas environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.