Five years ago, the concept of addressed fiber Bragg structures (AFBS) was proposed, which simultaneously perform the functions of a two-frequency radiation shaper, the difference frequency of which is the AFBS address, and a sensitive element, since the value of the difference frequency is invariant to measured physical fields, and the set of difference frequencies, moreover, is orthogonal in the array of such sensors, enabling their address multiplexing. In this article, we provide an overview of the theory and technology of AFBS, including the structures with three or more spectral components with various combinations of difference frequencies, symmetrical and asymmetric, performing the functions of the address and converting information signals to the low-frequency range at the same time, along with other functions. The subjects of interrogation of these structures, their fabrication and calibration are discussed as well. We also consider a wide range of applications in which AFBS can be used, covering such areas as oil and gas production, power engineering, transport, medicine, etc. In addition, the prospects of AFBS further development are proposed.