-Fetal exposure to synthetic glucocorticoids in sheep results in increased fetal hypothalamic-pituitaryadrenal (HPA) activity persisting to one year of age. We aimed to determine the effects of single or repeated maternal or fetal betamethasone injections on offspring HPA activity at 2 and 3 yr of age and whether changes in adrenal mediators of steroidogenesis contribute to changes in pituitary-adrenal function. Pregnant ewes or their fetuses received either repeated intramuscular saline or betamethasone injections (0.5 mg/kg) at 104, 111, 118, and 124 days of gestation (dG) or a single betamethasone injection at 104 dG followed by saline at 111, 118, and 124 dG. Offspring were catheterized at 2 and 3 yr of age and given corticotrophin-releasing hormone ϩ arginine vasopressin challenges. Adrenal tissue was collected for quantitative RT-PCR mRNA determination at 3.5 yr of age. In 2-yr-old offspring, maternal betamethasone injections did not alter basal ACTH or cortisol levels, but repeated injections elevated ACTH responses. At 3 yr of age, basal ACTH was elevated, and both basal and stimulated cortisol levels were suppressed by repeated maternal injections. Basal and stimulated cortisol-to-ACTH ratios and basal cortisol-to-cytochrome P-450 17␣-hydroxylase (P450c17) mRNA ratios were suppressed by repeated injections. Repeated fetal betamethasone injections attenuated basal ACTH and cortisol levels in offspring at 2 but not 3 yr of age. Plasma changes were not associated with altered adrenal P450c17, ACTH receptor, -hydroxysteroid dehydrogenase, or glucocorticoid receptor mRNA levels. These data suggest that maternal, but not fetal, betamethasone administration results in adrenal suppression in adulthood.hypothalamic-pituitary-adrenal; glucocorticoid programming; adrenal; steroidogenic enzymes A NUMBER OF MODELS of developmental programming exist that suggest that fetal adaptations to intrauterine influences can result in adverse health outcomes: one such model is fetal glucocorticoid exposure. A number of circumstances during intrauterine development can lead to fetal exposure to elevated circulating glucocorticoids. Maternal stress, resulting in an elevation of maternal glucocorticoid levels, has been associated with alterations in postnatal endocrine function in offspring as well as alterations in temperament and cognition (2,3,9,16,24,41). Overexposure to either endogenous or exogenous glucocorticoids during fetal life "programs" a number of organ systems and increases the predisposition to several disease states in later life (8,28,42).In the ovine fetus, low-dose dexamethasone infusion altered the basal set point of the hypothalamic-pituitary-adrenal (HPA) axis and enhanced fetal HPA axis responses to acute stress (7). In sheep, we have shown previously that maternal administration of synthetic glucocorticoids at levels sufficient to induce fetal lung maturation (12) reduced prenatal (36) and postnatal weight to 3 mo of age (22). Offspring demonstrated elevated insulin responses to a glucose load at 1 yr of...
The aim of this study was to determine whether supplementation with fish oil-derived n-3 polyunsaturated fatty acids (n-3 PUFA) during pregnancy modifies placental PUFA composition, the accumulation of specialised pro-resolving lipid mediators (SPMs, specifically resolvins (Rv), protectins (PD) and upstream precursors) and inflammatory gene expression. Placentas were collected from women (nZ51) enrolled in a randomised, placebo controlled trial of n-3 PUFA supplementation from 20-week gestation. Lipids were extracted for fatty acid analysis and SPMs were quantitated by mass spectrometry. Gene expression was determined by qRT-PCR. Using multiple regression analysis, data were correlated for placental n-3 PUFA and SPM levels with PUFA levels in maternal and cord blood erythrocytes. Supplementation with n-3 PUFAs increased placental docosahexaenoic acid (DHA) levels, but not eicosapentaenoic acid (EPA) levels (P!0.05), and increased the levels of the SPM precursors 18-hydroxyeicosapentaenoic acid and 17-hydroxydocosahexaenoic acid (17-HDHA) by two-to threefold (P!0.0005). RvD1, 17R-RvD1, RvD2 and PD1 were detectable in all placentas, but concentrations were not significantly increased by n-3 PUFA supplementation. Placental DHA levels were positively associated with maternal and cord DHA levels (P!0.005), and with placental 17-HDHA concentrations (P!0.0001). Placental mRNA expression of PTGS2, IL1b, IL6 and IL10 was unaffected by n-3 PUFA supplementation, but TNFa expression was increased by 14-fold (P!0.05). We conclude that n-3 PUFA supplementation in pregnancy i) enhances placental accumulation of DHA and SPM precursors, ii) does not alter placental EPA levels, and iii) has no stimulatory effects on inflammatory gene expression. Further studies are required to ascertain the biological significance of SPMs in the placenta and the potential immunomodulatory effects of elevating placental SPM levels.
The placenta may mediate glucocorticoid-induced fetal growth restriction. Previous studies have examined effects of fetal cortisol in sheep, which reduces placental binucleate cell (BNC) number; the source of ovine placental lactogen (oPL). The effects of maternal GC are unknown. Therefore, this study examined the effects of maternal betamethasone (BET) administration on BNC number, distribution, placental oPL protein levels, and maternal and fetal plasma oPL levels. Pregnant ewes were randomized to receive injections of saline or one (104 days of gestation; dG), two (104 and 111 dG), or three (104, 111, and 118 dG) doses of BET (0 . 5 mg/kg). Placental tissue was collected before, during, and after the period of BET treatment. Fetal (121-146 dG) and placental (121 dG) weights were decreased after BET when compared with controls. In controls, the mean number of BNCs increased until 132 dG and decreased thereafter. Placental oPL protein levels peaked at 109 dG and remained stable thereafter. Maternal plasma oPL levels in controls increased across gestation; fetal plasma oPL levels decreased. BNCs were reduced by 24% to 47% after BET when compared with controls at all ages studied. Placental oPL protein levels, maternal, and fetal plasma oPL levels were also reduced after BET injections, but recovered to values that were not different to controls near term. BET disrupted the normal distribution of BNCs within the placentome. These data may suggest a placental role in growth restrictive effects of prenatal maternal BET exposure through alterations in placental output of oPL, a key metabolic hormone of pregnancy.
Fetal exposure to elevated levels of bioactive glucocorticoids early in gestation, as in suspected cases of congenital adrenal hyperplasia, may result in adverse neurological events. Fetal hypothalamic-pituitary-adrenal development and function may be involved. We investigated immediate and long-term effects of maternal dexamethasone (DEX) administration early in pregnancy on fetal growth and pituitary-adrenal activity in sheep. Pregnant ewes carrying singleton fetuses (total n = 119) were randomized to control (2 ml saline/ewe) or DEX-treated groups (im injections of 0.14 mg/kg ewe weight . 12 h) at 40-41 d gestation (dG). At 50, 100, 125, and 140 dG, fetal plasma and tissues were collected. DEX-exposed fetuses were lighter than controls at 100 dG (P < 0.05) but not at any other times. Fetal plasma ACTH levels and pituitary POMC and PC-1 mRNA levels were similar between groups. Fetal plasma cortisol levels were significantly reduced after DEX exposure in both male and female fetuses at 50 dG (P < 0.05), were similar at 100 and 125 dG, but were significantly higher than controls at 140 dG. At 140 dG, there was increased adrenal P450C(17) and 3beta-HSD mRNA in female fetuses and reduced expression of ACTH-R mRNA in males. Fetal hepatic CBG mRNA levels mimicked plasma cortisol patterns. DEX exposure reduced CBG only in males at 50 dG (P < 0.05). Placental mRNA levels of 11beta-HSD2 were increased after DEX in males (P < 0.05). Therefore, in sheep, early DEX may alter the developmental trajectory of the fetal hypothalamic-pituitary-adrenal axis, directly increasing fetal adrenal activation but not anterior pituitary function. In females, this effect may be attributed, in part, to increased fetal adrenal steroidogenic activity.
To determine the expression of glucocorticoid metabolizing and action genes in the hippocampus of fetal, neonatal, and adult sheep. Pregnant ewes (or their fetuses) received intramuscular injections of saline or betamethasone (BETA, 0-5 mg/kg) at 104, 111, 118, and/or 125 days of gestation (dG). Hippocampal tissue was collected prior to (75, 84, and 101 dG), during (109 and 116 dG), or after (121, 132, and 146 dG; 6 and 12 postnatal weeks; 3 . 5 years of age) saline or BETA injections. Hippocampal glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and 11b-hydroxysteroid dehydrogenase (11bHSD)1 and 11bHSD2 mRNA levels were determined using qRT-PCR. Control animals late in gestation demonstrated a decrease in mRNA encoding GR and 11bHSD1, whereas 11bHSD2 was undetectable, consistent with a damping of the negative feedback influence of circulating or locally produced cortisol on the hypothalamic-pituitary-adrenal (HPA) axis. BETA-administration had transient effects on fetal GR and MR, and early in postnatal life (12 weeks of age) 11bHSD1 mRNA was increased. Hippocampal MR mRNA was elevated in adult offspring exposed to either one or four doses of maternal BETA (P!0 . 001). Four courses of maternal BETA increased 11bHSD2 (P!0 . 05) but not 11bHSD1 mRNA levels. Late in gestation a reduction in hippocampal GR and 11bHSD1 mRNA suggests lessening of glucocorticoid negative feedback, facilitating increased preterm HPA activity and parturition. Adult offspring of BETA-treated mothers demonstrated increased MR and 11bHSD2 mRNA, therefore it appears that exposure of fetus to high levels of synthetic glucocorticoids may have long-lasting effects on the hippocampal expression of HPA-related genes into adulthood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.