As a kind of non-invasive, low-cost, and readily available brain examination, EEG has attached significance to the means of clinical diagnosis of epilepsy. However, the reading of long-term EEG records has brought a heavy burden to neurologists and experts. Therefore, automatic EEG classification for epileptic patients plays an essential role in epilepsy diagnosis and treatment. This paper proposes an Attention Mechanism-based Wavelet Convolution Neural Network for epilepsy EEG classification. Attention Mechanism-based Wavelet Convolution Neural Network firstly uses multi-scale wavelet analysis to decompose the input EEGs to obtain their components in different frequency bands. Then, these decomposed multi-scale EEGs are input into the Convolution Neural Network with an attention mechanism for further feature extraction and classification. The proposed algorithm achieves 98.89% triple classification accuracy on the Bonn EEG database and 99.70% binary classification accuracy on the Bern-Barcelona EEG database. Our experiments prove that the proposed algorithm achieves a state-of-the-art classification effect on epilepsy EEG.
Multi-focus image fusion is an image processing that generates an integrated image by merging multiple images from different focus area in the same scene. For most fusion methods, the detection of the focus area is a critical step. In this paper, we propose a multi-focus image fusion algorithm based on a dual convolutional neural network (DualCNN), in which the focus area is detected from super-resolved images. Firstly, the source image is input into a DualCNN to restore the details and structure from its superresolved image, as well as to improve the contrast of the source image. Secondly, the bilateral filter is used to reduce noise on the fused image, and the guided filter is used to detect the focus area of the image and refine the decision map. Finally, the fused image is obtained by weighting the source image according to the decision map. Experimental results show that our algorithm can well retain image details and maintain spatial consistency. Compared with existing methods in multiple groups of experiments, our algorithm can achieve better visual perception according to subjective evaluation and objective indexes. INDEX TERMS Multi-focus image fusion, super-resolution, dual convolutional neural network, focus area detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.