Multi-focus image fusion is an image processing that generates an integrated image by merging multiple images from different focus area in the same scene. For most fusion methods, the detection of the focus area is a critical step. In this paper, we propose a multi-focus image fusion algorithm based on a dual convolutional neural network (DualCNN), in which the focus area is detected from super-resolved images. Firstly, the source image is input into a DualCNN to restore the details and structure from its superresolved image, as well as to improve the contrast of the source image. Secondly, the bilateral filter is used to reduce noise on the fused image, and the guided filter is used to detect the focus area of the image and refine the decision map. Finally, the fused image is obtained by weighting the source image according to the decision map. Experimental results show that our algorithm can well retain image details and maintain spatial consistency. Compared with existing methods in multiple groups of experiments, our algorithm can achieve better visual perception according to subjective evaluation and objective indexes. INDEX TERMS Multi-focus image fusion, super-resolution, dual convolutional neural network, focus area detection.
In this paper, a remote sensing image fusion method is presented since sparse representation (SR) has been widely used in image processing, especially for image fusion. Firstly, we used source images to learn the adaptive dictionary, and sparse coefficients were obtained by sparsely coding the source images with the adaptive dictionary. Then, with the help of improved hyperbolic tangent function (tanh) and l 0 − max , we fused these sparse coefficients together. The initial fused image can be obtained by the image fusion method based on SR. To take full advantage of the spatial information of the source images, the fused image based on the spatial domain (SF) was obtained at the same time. Lastly, the final fused image could be reconstructed by guided filtering of the fused image based on SR and SF. Experimental results show that the proposed method outperforms some state-of-the-art methods on visual and quantitative evaluations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.