Abstract:The wetland classification from remotely sensed data is usually difficult due to the extensive seasonal vegetation dynamics and hydrological fluctuation. This study presents a random forest classification approach for the retrieval of the wetland landcover in the arid regions by fusing the Pléiade-1B data with multi-date Landsat-8 data. The segmentation of the Pléiade-1B multispectral image data was performed based on an object-oriented approach, and the geometric and spectral features were extracted for the segmented image objects. The normalized difference vegetation index (NDVI) series data were also calculated from the multi-date Landsat-8 data, reflecting vegetation phenological changes in its growth cycle. The feature set extracted from the two sensors data was optimized and employed to create the random forest model for the classification of the wetland landcovers in the Ertix River in northern Xinjiang, China. Comparison with other classification methods such as support vector machine and artificial neural network classifiers indicates that the random forest classifier can achieve accurate classification with an overall accuracy of 93% and the Kappa coefficient of 0.92. The classification accuracy of the farming lands and water bodies that have distinct boundaries with the surrounding land covers was improved 5%-10% by making use of the property of geometric shapes. To remove the difficulty in the classification that was caused by the similar spectral features of the vegetation covers, the phenological difference and the textural information of co-occurrence gray matrix were incorporated into the classification, and the main wetland vegetation covers in the study area were derived from the two sensors data. The inclusion of phenological information in the classification enables the classification errors being reduced down, and the overall accuracy was improved approximately 10%. The results show that the proposed random forest classification by fusing multi-sensor data can retrieve better wetland landcover information than the other classifiers, which is significant for the monitoring and management of the wetland ecological resources in arid areas.
Asphalt pavement ages and incurs various distresses due to natural and human factors. Thus, it is crucial to rapidly and accurately extract different types of pavement distress to effectively monitor road health status. In this study, we explored the feasibility of pavement distress identification using low-altitude unmanned aerial vehicle light detection and ranging (UAV LiDAR) and random forest classification (RFC) for a section of an asphalt road that is located in the suburb of Shihezi City in Xinjiang Province of China. After a spectral and spatial feature analysis of pavement distress, a total of 48 multidimensional and multiscale features were extracted based on the strength of the point cloud elevations and reflection intensities. Subsequently, we extracted the pavement distresses from the multifeature dataset by utilizing the RFC method. The overall accuracy of the distress identification was 92.3%, and the kappa coefficient was 0.902. When compared with the maximum likelihood classification (MLC) and support vector machine (SVM), the RFC had a higher accuracy, which confirms its robustness and applicability to multisample and high-dimensional data classification. Furthermore, the method achieved an overall accuracy of 95.86% with a validation dataset. This result indicates the validity and stability of our method, which highway maintenance agencies can use to evaluate road health conditions and implement maintenance.
The aerosol optical depth (AOD) has a weaken effect on the solar ultraviolet radiation, which has an important impact on human health. Taking the AOD weaken effect into consideration in the estimation of ultraviolet radiation helps to obtain an accurate result. However, the remotely sensed AOD has an uncertainty effect. By comparing the satellite remote sensing retrieval AOD with ground measured data in the period of 2005-2013 in Hong Kong, the uncertainty of AOD is obtained. The radiative transfer equation simulation method is used to get a quantitative evaluation of AOD uncertainty impact on the estimation of Ultraviolet Index (UVI). The results show that the uncertainty of remotely sensed AOD can cause one grade deviation of UVI in the worst situation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.