Controlled release of CRISPR-Cas9 ribonucleoprotein (RNP) and codelivery with other drugs remain a challenge. We demonstrate controlled release of CRISPR-Cas9 RNP and codelivery with antitumor photosensitizer chlorin e6 (Ce6) using near-infrared (NIR)– and reducing agent–responsive nanoparticles in a mouse tumor model. Nitrilotriacetic acid–decorated micelles can bind His-tagged Cas9 RNP. Lysosomal escape of nanoparticles was triggered by NIR-induced reactive oxygen species (ROS) generation by Ce6 in tumor cells. Cytoplasmic release of Cas9/single-guide RNA (sgRNA) was achieved by reduction of disulfide bond. Cas9/sgRNA targeted the antioxidant regulator Nrf2, enhancing tumor cell sensitivity to ROS. Without NIR irradiation, Cas9 was degraded in lysosomes and gene editing failed in normal tissues. The synergistic effects of Ce6 photodynamic therapy and Nrf2 gene editing were confirmed in vivo. Controlled release of CRISPR-Cas9 RNP and codelivery with Ce6 using stimuli-responsive nanoparticles represent a versatile strategy for gene editing with potentially synergistic drug effects.
Directional
droplet transportation without extra energy input remains
a challenge in microfluidic biochips for clinical detections. Herein,
inspired by the water-collecting behaviors on the cactus spine, we
fabricate nanomaterial-based superwettable microspine (SMS) chips.
The bioinspired SMS chips are capable of spontaneous and directional
droplet transportation by synergistically combining geometric asymmetry
and surface superhydrophilicity. Based on theoretical models, the
gradient of the Laplace pressure arising from the geometric asymmetry
of the SMS chip can dominate the directional transportation of the
droplet, and the superhydrophilicity of the nanomaterial-based microspine
can also contribute to the droplet self-transportation. The multimicrochannel
SMS chips provide a simple and energy efficient technology to realize
accurate detection of serum prostate-specific antigen (PSA) from prostate
cancer patients, showing great potential as a biosensing platform
for clinical applications. We believe that our bioinspired superwettable
two-dimensional conical surface will offer effective means for the
design of smart microfluidic devices and have great potential applications
in multicomponent biosensing and clinical detection.
The inexpensive hypolipidemic drug simvastatin (SIM), which promotes bone regeneration by enhancing bone morphogenetic protein 2 (BMP-2) expression, has been regarded as an ideal alternative to BMP-2 therapy. However, SIM has low bioavailability and may induce the upregulation of the BMP-2-antagonistic noggin protein, which greatly limits the osteogenic effect. Here, a pH-sensitive copolymer, monomethoxy-poly(ethylene glycol)- b-branched polyethyleneimine- b-poly( N-( N', N'-diisopropylaminoethyl)- co-benzylamino)aspartamide (mPEG-bPEI-PAsp(DIP-BzA)) (PBP), was synthesized and self-assembled into a cationic micelle. SIM and siRNA targeting the noggin gene (N-siRNA) were loaded into the PAsp(DIP-BzA) core and the cationic bPEI interlayer of the micelle via hydrophobic and electrostatic interactions, respectively. The SIM-loaded micelle effectively delivered SIM into preosteoblast MC3T3-E1 cells and rapidly released it inside the acidic lysosome, resulting in the elevated expression of BMP-2. Meanwhile, the codelivered N-siRNA effectively suppressed the expression of noggin. Consequently, SIM and N-siRNA synergistically increased the BMP-2/noggin ratio and resulted in an obviously higher osteogenetic effect than did simvastatin or N-siRNA alone, both in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.