The core collection is a small subset that minimizes genetic redundancy while preserving the maximum genetic diversity of the entire population. Research on the core collection is crucial for the efficient management and utilization of germplasm resources. In this paper, the concept of the core collection and the research progress of its construction have briefly been summarized. Subsequently, some perspectives have been proposed in this research field for the near future. Four novel opinions have been presented, (1) the effective integration of multiple data types and accurate phenotyping methods need to be focused on; (2) the sampling strategy and bioinformatics software should be given attention; (3) the core collection of afforestation tree and bamboo species, with a wide natural distribution range and a large planting area, need to be carried out as soon as possible; (4) we should place a high priority on the study of genes discoveries and utilize these with a rapid, precise and high-throughput pattern based on re-sequencing technology. This paper provides a theoretical and technological reference for further study and the application of the plant core collection.
The leaf traits measured in multiple species are known to vary between seasons, but there is a knowledge gap relating to the seasonal variability and environmental adaptation of plants in tropical rainforests. To investigate the dynamics of the functional traits of dominant species in tropical rainforests and the differences in their adaptation strategies to seasonal drought, the results of this study can provide a scientific basis for tropical rainforest conservation resource protection. Six dominant species, including three trees (Hopea reticulata, Vatica mangachapoi, and Diospyros chunii) and three vine plants (Ancistrocladus tectorius, Phanera khasiana, and Uvaria sanyaensis), in tropical lowland rainforest in the Ganzaling Nature Reserve of Hainan province were selected as study objectives. The key leaf traits were studied using the paraffin section method, leaf epidermis segregation method, and Li-6400 portable photosynthesis system in June, September, December, 2019, and March, 2020. Results showed that significant differences in photosynthetic physiology and morphological and structural parameters among species, as well as seasonal variability, were observed in leaf photosynthetic physiology, but not in leaf morphological or structural parameters. A phenotypic plasticity index (PPI) analysis revealed more variability in leaf photosynthetic physiology (Average PPI = 0.37) than in leaf anatomical structure and morphology (Average PPI = 0.26), suggesting that they adapt to seasonal changes primarily by regulating photosynthetic physiological parameters rather than leaf morphology or anatomical structure. The dominant trees were found to have higher water use efficiency, leaf dry-matter content, and smaller leaf areas compared to vine plants. This indicates that the dominant tree species depend on high water use efficiency and leaf morphological characteristics to adapt to seasonal changes. The majority of leaf anatomical structure parameters associated with drought tolerance were higher in the three dominant vine species, indicating that the dominant vine species adapted to drought stress primarily by altering the leaf anatomical structure This study provides information on how tropical rainforest plants adapt to seasonal drought as well as supporting the protection of tropical rainforest ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.