We introduce a new approach to simulating rare events for Markov random walks with heavy-tailed increments. This approach involves sequential importance sampling and resampling, and uses a martingale representation of the corresponding estimate of the rare-event probability to show that it is unbiased and to bound its variance. By choosing the importance measures and resampling weights suitably, it is shown how this approach can yield asymptotically efficient Monte Carlo estimates.
We provide a sequential Monte Carlo method for estimating rare-event probabilities in dynamic, intensity-based point process models of portfolio credit risk. The method is based on a change of measure and involves a resampling mechanism. We propose resampling weights that lead, under technical conditions, to a logarithmically efficient simulation estimator of the probability of large portfolio losses. A numerical analysis illustrates the features of the method and contrasts it with other rare-event schemes recently developed for portfolio credit risk, including an interacting particle scheme and an importance sampling scheme.
We introduce a new approach to simulating rare events for Markov random walks with heavy-tailed increments. This approach involves sequential importance sampling and resampling, and uses a martingale representation of the corresponding estimate of the rare-event probability to show that it is unbiased and to bound its variance. By choosing the importance measures and resampling weights suitably, it is shown how this approach can yield asymptotically efficient Monte Carlo estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.