We investigate the performance of the scan (maximum likelihood ratio statistic) and of the average likelihood ratio statistic in the problem of detecting a deterministic signal with unknown spatial extent in the prototypical univariate sampled data model with white Gaussian noise. Our results show that the scan statistic, a popular tool for detection problems, is optimal only for the detection of signals with the smallest spatial extent. For signals with larger spatial extent the scan is suboptimal, and the power loss can be considerable. In contrast, the average likelihood ratio statistic is optimal for the detection of signals on all scales except the smallest ones, where its performance is only slightly suboptimal. We give rigorous mathematical statements of these results as well as heuristic explanations which suggest that the essence of these findings applies to detection problems quite generally, such as the detection of clusters in models involving densities or intensities or the detection of multivariate signals. We present a modification of the average likelihood ratio that yields optimal detection of signals with arbitrary extent and which has the additional benefit of allowing for a fast computation of the statistic. In contrast, optimal detection with the scan seems to require the use of scale-dependent critical values.
Several classical results on boundary crossing probabilities of Brownian motion and random walks are extended to asymptotically Gaussian random fields, which include sums of i.i.d. random variables with multidimensional indices, multivariate empirical processes, and scan statistics in change-point and signal detection as special cases. Some key ingredients in these extensions are moderate deviation approximations to marginal tail probabilities and weak convergence of the conditional distributions of certain "clumps" around high-level crossings. We also discuss how these results are related to the Poisson clumping heuristic and tube formulas of Gaussian random fields, and describe their applications to laws of the iterated logarithm in the form of the Kolmogorov-Erdős-Feller integral tests.
By making use of martingale representations, we derive the asymptotic normality of particle filters in hidden Markov models and a relatively simple formula for their asymptotic variances. Although repeated resamplings result in complicated dependence among the sample paths, the asymptotic variance formula and martingale representations lead to consistent estimates of the standard errors of the particle filter estimates of the hidden states.
Consider a large number of detectors each generating a data stream. The task is to detect online, distribution changes in a small fraction of the data streams. Previous approaches to this problem include the use of mixture likelihood ratios and sum of CUSUMs. We provide here extensions and modifications of these approaches that are optimal in detecting normal mean shifts. We show how the (optimal) detection delay depends on the fraction of data streams undergoing distribution changes as the number of detectors goes to infinity. There are three detection domains. In the first domain for moderately large fractions, immediate detection is possible. In the second domain for smaller fractions, the detection delay grows logarithmically with the number of detectors, with an asymptotic constant extending those in sparse normal mixture detection. In the third domain for even smaller fractions, the detection delay lies in the framework of the classical detection delay formula of Lorden. We show that the optimal detection delay is achieved by the sum of detectability score transformations of either the partial scores or CUSUM scores of the data streams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.