Dielectric polymers for electrostatic energy storage suffer from low energy density and poor efficiency at elevated temperatures, which constrains their use in the harsh-environment electronic devices, circuits, and systems. Although incorporating insulating, inorganic nanostructures into dielectric polymers promotes the temperature capability, scalable fabrication of high-quality nanocomposite films remains a formidable challenge. Here, we report an all-organic composite comprising dielectric polymers blended with high-electron-affinity molecular semiconductors that exhibits concurrent high energy density (3.0 J cm −3) and high discharge efficiency (90%) up to 200°C, far outperforming the existing dielectric polymers and polymer nanocomposites. We demonstrate that molecular semiconductors immobilize free electrons via strong electrostatic attraction and impede electric charge injection and transport in dielectric polymers, which leads to the substantial performance improvements. The all-organic composites can be fabricated into large-area and high-quality films with uniform dielectric and capacitive performance, which is crucially important for their successful commercialization and practical application in high-temperature electronics and energy storage devices.
Ferroelectric polymer nanocomposites are widely used in capacitive energy storage, electrocaloric refrigeration, and mechanical energy harvesting due to their exceptional electric polarization property and ease of fabrication. It is generally considered that the abnormal performance of ferroelectric nanocomposites stems from the interfacial region between the polymer matrix and embedded nanoparticles. However, direct evidence of the distinct local electric polarization property at the interfacial region is not yet accessible. Herein, a modified Kelvin probe force microscopy (KPFM) method with nanoscale spatial resolution is reported for direct detection of local polarization property at the matrix/particle interface in ferroelectric nanocomposites. Typical ferroelectric nanocomposites are studied using the present method. It is quantitatively probed that the electric polarization at matrix/particle interfacial region is higher than the polymer matrix under applied electric fields. Taking into account the enhanced local electric polarization gauged by the modified KPFM, the dielectric property of ferroelectric polymer nanocomposites matches with bulk experimental characterizations, indicating that the established method is reliable. It is anticipated that the present method, opening up new possibilities in understanding the matrix/particle interfacial region, may help with judicious design and engineering of high‐performance ferroelectric polymer nanocomposites.
Polymer nanocomposite dielectrics possess exceptional electric properties that are absent in the pristine dielectric polymers. The matrix/particle interface in polymer nanocomposite dielectrics is suggested to play decisive roles on the bulk material performance. Herein, we present a critical overview of recent research advances and important insights in understanding the matrix/particle interfacial characteristics in polymer nanocomposite dielectrics. The primary experimental strategies and stateof-the-art characterization techniques for resolving the local property− structure correlation of the matrix/particle interface are dissected in depth, with a focus on the characterization capabilities of each strategy or technique that other approaches cannot compete with. Limitations to each of the experimental strategy are evaluated as well. In the last section of this Review, we summarize and compare the three experimental strategies from multiple aspects and point out their advantages and disadvantages, critical issues, and possible experimental schemes to be established. Finally, the authors' personal viewpoints regarding the challenges of the existing experimental strategies are presented, and potential directions for the interface study are proposed for future research.
Heterogeneous dielectric materials such as dielectric polymer nanocomposites have attracted extensive attention because of their exceptional insulating and dielectric performance, which originates from the unique space charge dynamics associated with the various interfacial regions. However, the space charge distribution and transport in polymer nanocomposites remain elusive due to the lack of analytical methods that can precisely probe the charge profile at the nanoscale resolution. Although a few studies have explored the possibility of using scanning probe techniques for characterizing the local charge distribution, the interference from induced electrical polarization of the material has been unfortunately ignored, leading to inaccurate results. In this contribution, we report an open-loop Kelvin probe force microscopy (KPFM) method with nanoscale resolution for the direct detection of the space charge profile in dielectric polymer nanocomposites. Unlike the conventional studies where a vertical direct current (DC) voltage is applied on the sample through the probe to evoke the charge injection and transport in dielectric polymer nanocomposites, the present method is established based on a delicate electrode configuration where a lateral electric field is allowed to be applied on the sample during the KPFM test. This special testing configuration enables real-time charge injection and transport without inducing the electrical polarization of material along the vertical direction, which gives rise to clean mapping of space charges and reveals the interfacial charge trapping in polymer nanocomposites. This work provides a robust and reliable method for studying the sophisticated charge transport properties associated with the various interfacial regions in heterogeneous dielectric materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.