Macropinocytosis is an important mechanism of internalizing extracellular materials and dissolved molecules in eukaryotic cells. Macropinocytosis has a dual effect on cancer cells. On the one hand, cells expressing RAS genes (such as K-RAS, H-RAS) under the stress of nutrient deficiency can spontaneously produce constitutive macropinocytosis to promote the growth of cancer cells by internalization of extracellular nutrients (like proteins), receptors, and extracellular vesicles(EVs). On the other hand, abnormal expression of RAS genes and drug treatment (such as MOMIPP) can induce a novel cell death associated with hyperactivated macropinocytosis: methuosis. Based on the dual effect, there is immense potential for designing anticancer therapies that target macropinocytosis in cancer cells. In view of the fact that there has been little review of the dual effect of macropinocytosis in cancer cells, herein, we systematically review the general process of macropinocytosis, its specific manifestation in cancer cells, and its application in cancer treatment, including anticancer drug delivery and destruction of macropinocytosis. This review aims to serve as a reference for studying macropinocytosis in cancers and designing macropinocytosis-targeting anticancer drugs in the future.
Objective
There were rarely investigations on the effects and molecular mechanisms of oral squamous cell carcinoma (OSCC) cells when treated with isorhamnetin. This article assesses the anti‐cancer effect of isorhamnetin.
Methods and materials
Oral squamous cell carcinoma cells were treated with or without isorhamnetin. Cell proliferation, cell cycle arrest, cell migration, cell death, and the related signaling pathways were evaluated.
Results
The results revealed that cell proliferation was inhibited in a dose‐ and time‐dependent manner, which was confirmed by diminished cell viability and revealed by decreased in the number of cell colonies. In addition, the cell cycle arrested in the G2/M phase, and the protein levels of cyclin B1 and CDC2 were suppressed. Moreover, the cell migration was inhibited, and the protein levels of related proteins were modulated. Furthermore, it could be observed that abundant cytoplasmic vacuoles existed which that were derived from mitochondria and the endoplasmic reticulum. It was confirmed that cell death did not result from apoptosis and may have which may be apt to paraptosis. Isorhamnetin was observed to upregulate phosphorylated ERK cascades and increase intracellular reactive oxygen species levels.
Conclusions
Our study suggested that the anti‐cancer effect of isorhamnetin might trigger paraptosis, which may indicate a new therapeutic approach to OSCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.