In general, multiple components such as water direct saturation (DS), magnetization transfer (MT), chemical exchange saturation transfer (CEST) and aliphatic nuclear overhauser effect (NOE) contribute to Z-spectrum. The conventional CEST quantification method based on asymmetrical analysis may lead to quantification errors due to the semi-solid MT asymmetry and the aliphatic NOE effect located on single side of the Z-spectrum. Fitting individual contributors to the Z-spectrum may improve the quantification of each component. In this study, we aim to characterize the multiple exchangeable components from an intracranial tumor model using a simplified Z-spectral fitting method. In this method, the Z-spectrum acquired at low saturation RF amplitude (50 Hz) was modeled as the summation of five Lorentzian functions that correspond to NOE, MT effect, bulk water, amide proton transfer (APT) effect and a CEST peak located at +2ppm, called CEST@2ppm. With the pixel-wise fitting, the regional variation of these five components in the brain tumor and the normal brain tissue were quantified and summarized. Increased APT effect, decreased NOE and reduced CEST@2ppm were observed in the brain tumor compared to the normal brain tissue. Additionally, the CEST@2ppm decreased with tumor progression. The CEST@2ppm was found to correlate with the creatine concentration quantified with proton magnetic resonance spectroscopy (1H-MRS). Based on the correlation curve, the creatine contribution to the CEST@2ppm was quantified. The CEST@2ppm signal could be a novel imaging surrogate for in vivo creatine, the important bioenergetics marker. Given its noninvasive nature, this CEST MRI method may have broad applications in cancer bioenergetics.
Previous findings suggested the role of the prefrontal cortex, hippocampus, and cingulate gyrus in major depressive disorders (MDD), but the white matter microstructural abnormalities of the fibers connecting these brain structures are not known. The purpose of this study was to test the hypothesis that white matter abnormalities are present in association fibers of the uncinate fasciculus (UF) and cingulum bundle (CB) among MDD subjects. A total of 21 MDD subjects aged between 30 and 65 years and 21 age-matched healthy controls (HC) were recruited. All subjects were right-handed and without history of diabetes or other cardiac diseases. We extracted quantitative tract-specific measures based on diffusion tensor imaging tractography to examine both diffusivity and geometric properties of the UF and CB. Significantly decreased fractional anisotropy (FA) and increased radial diffusivity of the right UF were observed in MDD patients compared with HC (po0.05), while their geometric characteristics remained relatively unchanged. Among MDD subjects, depression severity had a significant negative correlation with normalized number of fibers (NNF) in the right UF (r ¼ À0.53, p ¼ 0.02). We also found significant age effect (oldoyoung) in HC group and laterality effect (L4R) in both groups in the FA measure of the CB. Our study demonstrates novel findings of white matter microstructural abnormalities of the right UF in MDD. In the MDD group, the severity of depression is associated with reduced NNF in the right UF. These findings have implications for both clinical manifestations of depression as well as its pathophysiology.
Objectives Late-life major depression (LLD) is characterized by distinct epidemiological and psychosocial factors, as well as medical co-morbidities that are associated with specific neuroanatomical differences. The purpose of this study was to use interregional correlations of cortical and subcortical volumes to examine cortical-subcortical structural network properties in subjects with LLD compared to healthy comparison subjects. Design Cross-sectional neuroimaging study Setting General community Participants We recruited 73 healthy elderly comparison subjects and 53 subjects with LLD who volunteered in response to advertisements. Measurements Brain network connectivity measures were generated by correlating regional volumes after controlling for age, gender, and intracranial volume using the Brain Connectivity Toolbox (www.brain-connectivity-toolbox.net). Results Results for overall network strength revealed that LLD networks showed a greater magnitude of associations for both positive and negative correlation weights compared to healthy elderly networks. LLD networks also demonstrated alterations in brain network structure when compared to healthy comparison subjects. LLD networks were also more vulnerable to targeted attacks compared to healthy elderly comparison subjects and this vulnerability was attenuated when controlling for white matter alterations. Conclusions Overall, this study demonstrates that cortical-subcortical network properties are altered in LLD and may reflect the underlying neuroanatomical vulnerabilities of the disorder.
In vivo measurement of neurotransmitters and modulators is now feasible with advanced proton magnetic resonance spectroscopy (1H-MRS) techniques. This review provides a basic tutorial of MRS, describes the methods available to measure brain glutamate, glutamine, γ-aminobutyric acid, glutathione, N-acetylaspartylglutamate, glycine, and serine at magnetic field strengths of 3Tesla or higher, and summarizes the neurochemical findings in schizophrenia. Overall, 1H-MRS holds great promise for producing biomarkers that can serve as treatment targets, prediction of disease onset, or illness exacerbation in schizophrenia and other brain diseases.
The C4 multiplet proton resonances of glutamate (Glu) around 2.35 ppm and glutamine (Gln) around 2.45 ppm usually overlap in MR spectra, particularly at low-and mid-field strengths (1.5-4.7T). A spectral simplification approach is introduced that provides unobstructed Glu and Gln measurement using a standard STEAM localization sequence with optimized interpulse timings. The underlying idea is to exploit the dependence of response of a coupled spin system on the echo time (TE) and mixing time (TM) to find an optimum timing set (TE, TM), at which the outer-wings of C4 "pseudo-triplet" proton reso-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.