We propose a new computing-inspired bio-detection framework called touchable computing (TouchComp). Under the rubric of TouchComp, the best solution is the cancer to be detected, the parameter space is the tissue region at high risk of malignancy, and the agents are the nanorobots loaded with contrast medium molecules for tracking purpose. Subsequently, the cancer detection procedure (CDP) can be interpreted from the computational optimization perspective: a population of externally steerable agents (i.e., nanorobots) locate the optimal solution (i.e., cancer) by moving through the parameter space (i.e., tissue under screening), whose landscape (i.e., a prescribed feature of tissue environment) may be altered by these agents but the location of the best solution remains unchanged. One can then infer the landscape by observing the movement of agents by applying the "seeing-is-sensing" principle. The term "touchable" emphasizes the framework's similarity to controlling by touching the screen with a finger, where the external field for controlling and tracking acts as the finger. Given this analogy, we aim to answer the following profound question: can we look to the fertile field of computational optimization algorithms for solutions to achieve effective cancer detection that are fast, accurate, and robust? Along this line of thought, we consider the classical particle swarm optimization (PSO) as an example and propose the PSO-inspired CDP, which differs from the standard PSO by taking into account realistic in vivo propagation and controlling of nanorobots. Finally, we present comprehensive numerical examples to demonstrate the effectiveness of the PSO-inspired CDP for different blood flow velocity profiles caused by tumor-induced angiogenesis. The proposed TouchComp bio-detection framework may be regarded as one form of natural computing that employs natural materials to compute.
Objective: We propose a novel iterative-optimizationinspired direct targeting strategy (DTS) for smart nanosystems, which harness swarms of externally manipulable nanoswimmers assembled by magnetic nanoparticles (MNPs) for knowledgeaided tumor sensitization and targeting. We aim to demonstrate through computational experiments that the proposed DTS can significantly enhance the accumulation of MNPs in the tumor site, which serve as a contrast agent in various medical imaging modalities, by using the shortest possible physiological routes and with minimal systemic exposure.Methods: The epicenter of a tumor corresponds to the global maximum of an externally measurable objective function associated with an in vivo tumor-triggered biophysical gradient; the domain of the objective function is the tissue region at a high risk of malignancy; swarms of externally controllable magnetic nanoswimmers for tumor sensitization are modeled as the guess inputs. The objective function may be resulted from a passive phenomenon such as reduced blood flow or increased kurtosis of microvasculature due to tumor angiogenesis; otherwise, the objective function may involve an active phenomenon such as the fibrin formed during the coagulation cascade activated by tumortargeted "activator" nanoparticles. Subsequently, the DTS can be interpreted from the iterative optimization perspective: guess inputs (i.e., swarms of nanoswimmers) are continuously updated according to the gradient of the objective function in order to find the optimum (i.e., tumor) by moving through the domain (i.e., tissue under screening). Along this line of thought, we propose the computational model based on the gradient descent (GD) iterative method to describe the GD-inspired DTS, which takes into account the realistic in vivo propagation scenario of nanoswimmers.Results: By means of computational experiments, we show that the GD-inspired DTS yields higher probabilities of tumor sensitization and more significant dose accumulation compared to the "brute-force" search, which corresponds to the systemic targeting scenario where drug nanoparticles attempt to target a tumor by enumerating all possible pathways in the complex vascular network.Conclusion: The knowledge-aided DTS has potential to enhance the tumor sensitization and targeting performance remarkably by exploiting the externally measurable, tumor-triggered biophysical gradients.Significance: We believe that this work motivates a novel biosensing-by-learning framework facilitated by externally manipulable, smart nanosystems.
We have proposed a new tumor sensitization and targeting (TST) framework, named in vivo computation, in our previous investigations. The problem of TST for an early and microscopic tumor is interpreted from the computational perspective with nanorobots being the "natural" computing agents, the high-risk tissue being the search space, the tumor targeted being the global optimal solution, and the tumortriggered biological gradient field (BGF) providing the aided knowledge for fitness evaluation of nanorobots. This natural computation process can be seen as on-the-fly path planning for nanorobot swarms with an unknown target position, which is different from the traditional path planning methods. Our previous works are focusing on the TST for a solitary lesion, where we proposed the weak priority evolution strategy (WP-ES) to adapt to the actuating mode of the homogeneous magnetic field used in the state-of-the-art nanorobotic platforms, and some in vitro validations were performed. In this paper, we focus on the problem of TST for multifocal tumors, which can be seen as a multimodal optimization problem for the "natural" computation. To overcome this issue, we propose a sequential targeting strategy (Se-TS) to complete TST for the multiple lesions with the assistance of nanorobot swarms, which are maneuvered by the external actuating and tracking devices according to the WP-ES. The Se-TS is used to modify the BGF landscape after a tumor is detected by a nanorobot swarm with the gathered BGF information around the detected tumor. Next, another nanorobot swarm will be employed to find the second tumor according to the modified BGF landscape without being misguided to the previous one. In this way, all the tumor lesions will be detected one by one. In other words, the paths of nanorobots to find the targets can be generated successively with the sequential modification of the BGF landscape. To demonstrate the effectiveness of the proposed Se-TS, we perform comprehensive simulation studies by enhancing the WP-ES based swarm intelligence algorithms using this strategy considering the realistic in-body constraints. The performance is compared against that of the "brute-force" search, which corresponds to the traditional systemic tumor targeting, and also against that of the standard swarm intelligence algorithms from the algorithmic perspective. Furthermore, some in vitro experiments are performed by using Janus microparticles as
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.