In smooth systems, the form of the heteroclinic Melnikov chaotic threshold is similar to that of the homoclinic Melnikov chaotic threshold. However, this conclusion may not be valid in nonsmooth systems with jump discontinuities. In this paper, based on a newly constructed nonsmooth pendulum, a kind of impulsive differential system is introduced, whose unperturbed part possesses a nonsmooth heteroclinic solution with multiple jump discontinuities. Using the recursive method and the perturbation principle, the effects of the nonsmooth factors on the behaviors of the nonsmooth dynamical system are converted to the integral items which can be easily calculated. Furthermore, the extended Melnikov function is employed to obtain the nonsmooth heteroclinic Melnikov chaotic threshold, which implies that the existence of the nonsmooth heteroclinic orbits may be due to the breaking of the nonsmooth heteroclinic loops under the perturbation of damping, external forcing and nonsmooth factors. It is worth pointing out that the form of the nonsmooth heteroclinic Melnikov function is different from the one of the nonsmooth homoclinic Melnikov function, which is quite different from the classical Melnikov theory.
A novel dynamic vibration absorber(DVA) model with negative stiffness and inerter-mass is presented and analytically studied in this paper. The research shows there are still two fixed points independent of the absorber damping in the amplitude frequency curve of the primary system when the system contains negative stiffness and inerter-mass. The optimum frequency ratio is obtained based on the fixed-point theory. In order to ensure the stability of the system, it is found that inappropriate inerter coefficient will cause the system instable when screening optimal negative stiffness ratio. Accordingly, the best working range of inerter is determined and optimal negative stiffness ratio and approximate optimal damping ratio are also obtained. At last the control performance of the presented DVA is compared with three existing typical DVAs. The comparison results in harmonic and random excitation show that the presented DVA could not only reduce the peak value of the amplitude-frequency curve of the primary system significantly, but also broaden the efficient frequency range of vibration mitigation.
Dynamic vibration absorbers (DVAs) are widely used in engineering practice because of their good vibration control performance. Structural design or parameter optimization could improve its control efficiency. In this paper, the viscoelastic Maxwell-type DVA model with an inerter and multiple stiffness springs is investigated with the combination of the traditional theory and an intelligent algorithm. Firstly, the expressions and approximate optimal values of the system parameters are obtained using the fixed-point theory to deal with the H∞ optimization problem, which can provide help with the range of parameters in the algorithm. Secondly, we innovatively introduce the particle swarm optimization (PSO) algorithm to prove that the algorithm could adjust the value of the approximate solution to minimize the maximum amplitude by analyzing and optimizing the single variable and four variables. Furthermore, the validity of the parameters is further verified by simulation between the numerical solution and the analytical solution using the fourth-order Runge–Kutta method. Finally, the DVA demonstrated in this paper is compared with typical DVAs under random excitation. The timing sequence and variances, as well as the decreased ratios of the displacements, show that the presented DVA has a more satisfactory control performance. The inerter and negative stiffness spring can indeed bring beneficial effects to the vibration absorber. Remarkably, the intelligent algorithm can make the resonance peaks equal in the parameter optimization of the vibration absorber, which is quite difficult to achieve with theoretical methods at present. The results may provide a theoretical and computational basis for the optimization design of DVA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.