The primary resonance and nonlinear vibrations of the functionally graded graphene platelet (FGGP) reinforced rotating pretwisted composite blade under combined the external and multiple parametric excitations are investigated with three different distribution patterns. The FGGP reinforced rotating pretwisted composite blade is simplified to the rotating pretwisted composite cantilever plate reinforced by the functionally graded graphene platelet. It is novel to simplify the leakage of the air flow in the tip clearance to the non-uniform axial excitation. The rotating speed of the steady-state adding a small periodic perturbation is considered. The aerodynamic load subjecting to the surface of the plate is simulated as the transverse excitation. Utilizing the first-order shear deformation theory, von-Karman nonlinear geometric relationship, Lagrange equation and mode functions satisfying the boundary conditions, three-degree-of-freedom nonlinear ordinary differential equations of motion are derived for the FGGP reinforced rotating pretwisted composite cantilever plate under combined the external and multiple parametric excitations. The primary resonance and nonlinear dynamic behaviors of the FGGP reinforced rotating pretwisted composite cantilever plate are analyzed by Runge-Kutta method. The amplitude-frequency response curves,force-frequency response curves, bifurcation diagrams, maximum Lyapunov exponent, phase portraits, waveforms and Poincare map are obtained to investigate the nonlinear dynamic responses of the FGGP reinforced rotating pretwisted composite cantilever plate under combined the external and multiple parametric excitations.
A novel dynamic vibration absorber(DVA) model with negative stiffness and inerter-mass is presented and analytically studied in this paper. The research shows there are still two fixed points independent of the absorber damping in the amplitude frequency curve of the primary system when the system contains negative stiffness and inerter-mass. The optimum frequency ratio is obtained based on the fixed-point theory. In order to ensure the stability of the system, it is found that inappropriate inerter coefficient will cause the system instable when screening optimal negative stiffness ratio. Accordingly, the best working range of inerter is determined and optimal negative stiffness ratio and approximate optimal damping ratio are also obtained. At last the control performance of the presented DVA is compared with three existing typical DVAs. The comparison results in harmonic and random excitation show that the presented DVA could not only reduce the peak value of the amplitude-frequency curve of the primary system significantly, but also broaden the efficient frequency range of vibration mitigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.