Gas exchange, chlorophyll (Chl) fluorescence, and contents of photosynthetic pigments, soluble proteins (ribulose-1,5bisphosphate carboxylase/oxygenase, RuBPCO), and antioxidant enzymes were characterized in the fully expanded 6 th leaves in rice seedlings grown on either complete (CK) or on nitrogen-deficient nutrient (N-deficiency) solutions during a 20-chase period. Compared with the control plants, the lower photosynthetic capacity at saturation irradiance (P max ) was accompanied by an increase in intercellular CO 2 concentration (C i ), indicating that in N-deficient plants the decline in P max was not due to stomatal limitation but due to the reduced carboxylation efficiency. The fluorescence parameters Φ PS2 , F v ′/F m ′, electron transport rate (ETR), and q P showed the same tendency as P max in N-deficient plants. Correspondingly, a higher q N paralleled the rise of the ratio of carotenoid (Car) to Chl contents. However, F v /F m was still diminished, suggesting that photoinhibition did occur in the photosystem 2 (PS2) reaction centres. In addition, the activities of antioxidant enzymes on a fresh mass basis were gradually lowered, leading to the aggravation of membrane lipid peroxidation with the proceeding N-deficiency. The accumulation of malonyldialdehyde resulted in the lessening of Chl and soluble protein content. Analyses of regression showed PS2 excitation pressure (1 -q P ) was linearly correlated with the content of Chl and inversely with soluble protein (particularly RuBPCO) content. There was a lag phase in the increase of PS2 excitation pressure compared to the decrease of RuBPCO content. Therefore, the increased excitation pressure under N-deficiency is probably the result of saturation of the electron transport chain due to the limitation of the use of reductants by the Calvin cycle. Rice plants responded to N-deficiency and high irradiance by decreasing light-harvesting capacity and by increasing thermal dissipation of absorbed energy.
Streptococcus mutans, the primary etiological agent of dental caries, produces several activities that promote its accumulation within the dental biofilm. These include glucosyltransferases, their glucan products, and proteins that bind glucan. At least three glucan binding proteins have been identified, and GbpB, the protein characterized in this study, appears to be novel. The gbpB gene was cloned and the predicted protein sequence contained several unusual features and shared extensive homology with a putative peptidoglycan hydrolase from group B streptococcus. Examination of gbpB genes from clinical isolates of S. mutans revealed that DNA polymorphisms, and hence amino acid changes, were limited to the central region of the gene, suggesting functional conservation within the amino and carboxy termini of the protein. The GbpB produced by clinical isolates and laboratory strains showed various distributions between cells and culture medium, and amounts of protein produced by individual strains correlated positively with their ability to grow as biofilms in an in vitro assay.
Potassium (K) influences the photosynthesis process in a number of ways; however, the mechanisms underlying the photosynthetic response to differences in K supply are not well understood. Concurrent measurements of gas exchange and chlorophyll fluorescence were made to investigate the effect of K nutrition on photosynthetic efficiency and mesophyll conductance (g(m)) in hickory seedlings (Carya cathayensis Sarg.) in a greenhouse. The results show that leaf K concentrations < 0.7-0.8% appeared to limit the leaf net CO2 assimilation rate (A), and that the relative limitation of photosynthesis due to g(m) and stomatal conductance (g(s)) decreased with increasing supplies of K. However, a sensitivity analysis indicated that A was most sensitive to the maximum carboxylation rate of Rubisco (V(c,max)) and the maximum rate of electron transport (J(max)). These results indicate that the photosynthetic rate is primarily limited by the biochemical processes of photosynthesis (V(c,max) and J(max)), rather than by g(m) and g(s) in K-deficient plants. Additionally, g(m) was closely correlated with g(s) and the leaf dry mass per unit area (M(A)) in hickory seedlings, which indicates that decreased g(m) and g(s) may be a consequence of leaf anatomical adaptation.
A large magnetoresistance ratio in excess of 10 000% (at 140 K, H=6 T) has been obtained in a sintered perovskitelike material with a composition of La0.60Y0.07Ca0.33MnOx. The doping of La–Ca–Mn–O with Y resulted in a decrease in the lattice parameter by ∼0.2%, and improved the magnetoresistance by an order of magnitude. The fact that such a large magnetoresistance can be obtained in a polycrystalline material implies that an epitaxial film growth may not be necessary for device applications, with fewer restrictions in substrate selection and processing parameters. Low field measurements at 77 K gave a magnetoresistance ratio of ∼6.5% at H=500 Oe in the La–Y–Ca–Mn–O sample.
Colossal magnetoresistance in excess of 106% has been obtained (at 110 K, H=6 T) in epitaxially grown La–Ca–Mn–O thin films. The as-deposited film exhibits a substantial magnetoresistance value of 39 000%, which is further improved by heat treatment. The magnetoresistance is found to be strongly dependent on film thickness, with the value reaching the maxima at ∼1000 Å thickness, and then reduced by orders of magnitude when the film is made thicker than ∼2000 Å. This behavior is interpreted in terms of lattice strain in the La–Ca–Mn–O films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.