In recent years, countries all over the world consider the future internet as the country’s strategic development directions, so projects about future internet have been launched by these countries. Load balancing algorithms and job allocations are main research problems in areas of resource management of future internet. In this paper, we introduce a load balancing model for future internet. We formulate the static load balancing problem in the model proposed above as noncooperative game among users and cooperative game among processors. Based on this model, we derive a load balancing algorithm for computing center. Finally, we execute the algorithm presented in this paper with another three algorithms for comparison purpose. The advantages of our algorithm are better scalability to the model, improving system performance, and low cost on maintaining system information.
As an information carrier with rich semantics, images contain more sentiment than texts and audios. So, images are increasingly used by people to express their opinions and sentiments in social network. The sentiments of the images are overall and should come from different regions. So, the recognition of the sentiment regions will help to concentrate on important factors the affect the sentiments. Meanwhile, deep learning method for image sentiment classification needs simple and efficient approach for simultaneously carrying out pruning and feature selection whilst optimizing the weights. Motivated by these observations, we design a region-based convolutional neural network using group sparse regularization for image sentiment classification: R-CNNGSR. The method obtains the initial sentiment prediction model through CNN using group sparse regularization to get compact neural network, and then automatically detect the sentiment regions by combining the underlying features and sentimental features. Finally, the whole image and the sentiment region are fused to predict the overall sentiment of the images. Experiment results demonstrate that our proposed R-CNNGSR significantly outperforms the state-ofthe-art methods in image sentiment classification.
Dealing with food safety issues in time through online public opinion incidents can reduce the impact of incidents and protect human health effectively. Therefore, by the smart technology of extracting the entity relationship of public opinion events in the food field, the knowledge graph of the food safety field is constructed to discover the relationship between food safety issues. To solve the problem of multi-entity relationships in food safety incident sentences for few-shot learning, this paper adopts the pipeline-type extraction method. Entity relationship is extracted from Bidirectional Encoder Representation from Transformers (BERTs) joined Bidirectional Long Short-Term Memory (BLSTM), namely, the BERT-BLSTM network model. Based on the entity relationship types extracted from the BERT-BLSTM model and the introduction of Chinese character features, an entity pair extraction model based on the BERT-BLSTM-conditional random field (CRF) is established. In this paper, several common deep neural network models are compared with the BERT-BLSTM-CRF model with a food public opinion events dataset. Experimental results show that the precision of the entity relationship extraction model based on BERT-BLSTM-CRF is 3.29%∼23.25% higher than that of other models in the food public opinion events dataset, which verifies the validity and rationality of the model proposed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.