Electronic skin (e-skin) has been under the spotlight due to great potential for applications in robotics, human-machine interfaces, and healthcare. Meanwhile, triboelectric nanogenerators (TENGs) have been emerging as an effective approach to realize self-powered e-skin sensors. In this work, bioinspired TENGs as self-powered e-skin sensors are developed and their applications for robotic tactile sensing are also demonstrated. Through the facile replication of the surface morphology of natural plants, the interlocking microstructures are generated on tribo-layers to enhance triboelectric effects. Along with the adoption of polytetrafluoroethylene (PTFE) tinny burrs on the microstructured tribo-surface, the sensitivity for pressure measurement is boosted with a 14-fold increase. The tactile sensing capability of the TENG e-skin sensors are demonstrated through the characterizations of handshaking pressure and bending angles of each finger of a bionic hand during handshaking with human. The TENG e-skin sensors can also be utilized for tactile object recognition to measure surface roughness and discern hardness. The facile fabrication scheme of the self-powered TENG e-skin sensors enables their great potential for applications in robotic dexterous manipulation, prosthetics, human-machine interfaces, etc.
On‐skin electrodes function as an ideal platform for collecting high‐quality electrophysiological (EP) signals due to their unique characteristics, such as stretchability, conformal interfaces with skin, biocompatibility, and wearable comfort. The past decade has witnessed great advancements in performance optimization and function extension of on‐skin electrodes. With continuous development and great promise for practical applications, on‐skin electrodes are playing an increasingly important role in EP monitoring and human–machine interfaces (HMI). In this review, the latest progress in the development of on‐skin electrodes and their integrated system is summarized. Desirable features of on‐skin electrodes are briefly discussed from the perspective of performances. Then, recent advances in the development of electrode materials, followed by the analysis of strategies and methods to enhance adhesion and breathability of on‐skin electrodes are examined. In addition, representative integrated electrode systems and practical applications of on‐skin electrodes in healthcare monitoring and HMI are introduced in detail. It is concluded with the discussion of key challenges and opportunities for on‐skin electrodes and their integrated systems.
Our results demonstrated an earlier onset in the expression of HMGB-1 than in tumor necrosis factor-α, IL-1β, and IL-6 after spinal cord injury. The release of HMGB-1 from neurons and macrophages is mediated through the HMGB-1/RAGE or TLR pathways. HMGB-1 seems to play at least some roles in the proinflammatory cascade originating the secondary damage after the initial spinal cord injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.