Heat stress (HS) is a prevalent negative factor affecting plant growth and development, as it is predominant worldwide and threatens agriculture on a large scale. PHYTOCHROMES (PHYs) are photoreceptors that control plant growth and development, and the stress signaling response partially interferes with their activity. PHYA, B1, and B2 are the most well-known PHY types in tomatoes. Our study aimed to identify the role of tomato ‘Money Maker’ phyA and phyB1B2 mutants in stable and fluctuating high temperatures at different growth stages. In the seed germination and vegetative growth stages, the phy mutants were HS tolerant, while during the flowering stage the phy mutants revealed two opposing roles depending on the HS exposure period. The response of the phy mutants to HS during the fruiting stage showed similarity to WT. The most obvious stage that demonstrated phy mutants’ tolerance was the vegetative growth stage, in which a high degree of membrane stability and enhanced water preservation were achieved by the regulation of stomatal closure. In addition, both mutants upregulated the expression of heat-responsive genes related to heat tolerance. In addition to lower malondialdehyde accumulation, the phyA mutant enhanced proline levels. These results clarified the response of tomato phyA and phyB1B2 mutants to HS.
Global warming and climate change have severely affected plant growth and food production. Therefore, minimizing these effects is required for sustainable crop yields. Understanding the molecular mechanisms in response to abiotic stresses and improving agricultural traits to make crops tolerant to abiotic stresses have been going on unceasingly. To generate desirable varieties of crops, traditional and molecular breeding techniques have been tried, but both approaches are time-consuming. Clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) and transcription activator-like effector nucleases (TALENs) are genome-editing technologies that have recently attracted the attention of plant breeders for genetic modification. These technologies are powerful tools in the basic and applied sciences for understanding gene function, as well as in the field of crop breeding. In this review, we focus on the application of genome-editing systems in plants to understand gene function in response to abiotic stresses and to improve tolerance to abiotic stresses, such as temperature, drought, and salinity stresses.
Drought stress is a severe environmental issue that threatens agriculture at a large scale. PHYTOCHROMES (PHYs) are important photoreceptors in plants that control plant growth and development and are involved in plant stress response. The aim of this study was to identify the role of PHYs in the tomato cv. ‘Moneymaker’ under drought conditions. The tomato genome contains five PHYs, among which mutant lines in tomato PHYA and PHYB (B1 and B2) were used. Compared to the WT, phyA and phyB1B2 mutants exhibited drought tolerance and showed inhibition of electrolyte leakage and malondialdehyde accumulation, indicating decreased membrane damage in the leaves. Both phy mutants also inhibited oxidative damage by enhancing the expression of reactive oxygen species (ROS) scavenger genes, inhibiting hydrogen peroxide (H2O2) accumulation, and enhancing the percentage of antioxidant activities via DPPH test. Moreover, expression levels of several aquaporins were significantly higher in phyA and phyB1B2, and the relative water content (RWC) in leaves was higher than the RWC in the WT under drought stress, suggesting the enhancement of hydration status in the phy mutants. Therefore, inhibition of oxidative damage in phyA and phyB1B2 mutants may mitigate the harmful effects of drought by preventing membrane damage and conserving the plant hydrostatus.
The CRISPR/Cas9 system is widely used for targeted mutagenesis in many organisms including plants. For application of this system, tissue culture methods need to be established. In this study, detailed methods for introduction of mutations in tomato and Nicotiana benthamiana plants using the CRISPR/Cas9 system are described. The methods include tissue culture protocols for tomato and N. benthamiana. We also demonstrate the methodology to generate Cas9free genome edited tomato plants and use of one single guide RNA (sgRNA) to edit two orthologs in N. benthamiana. The examples of editing the PHYTOENE DESATURASE (PDS) genes in these plants are also provided. The Cas9-free tomato line was obtained when tomato plants were cultured on a non-selective medium after transformation with the CRISPR/Cas9 system. Two orthologs of PDS in N. benthamiana were mutated using a sgRNA, because these orthologs contain the same nucleotide sequences with PAM motif. These mutations were inherited to the next generation. The mutations in the PDS genes resulted in an albino phenotype in tomato and N. benthamiana plants. These results demonstrate that the non-selective method is one of the ways to obtain Cas9-free genome editing in tomato plants and that the two orthologs can be edited by one sgRNA in N. benthamiana.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.