Cigarette smoking is associated with numerous diseases and poses a serious challenge to the current healthcare system worldwide. Smoking impacts both innate and adaptive immunity and plays dual roles in regulating immunity by either exacerbation of pathogenic immune responses or attenuation of defensive immunity. Adaptive immune cells affected by smoking mainly include T helper cells (Th1/Th2/Th17), CD4+CD25+ regulatory T cells, CD8+ T cells, B cells and memory T/B lymphocytes while innate immune cells impacted by smoking are mostly DCs, macrophages and NK cells. Complex roles of cigarette smoke have resulted in numerous diseases, including cardiovascular, respiratory and autoimmune diseases, allergies, cancers and transplant rejection etc. Although previous reviews have described the effects of smoking on various diseases and regional immunity associated with specific diseases, a comprehensive and updated review is rarely seen to demonstrate impacts of smoking on general immunity and, especially on major components of immune cells. Here, we aim to systematically and objectively review the influence of smoking on major components of both innate and adaptive immune cells, and summarize cellular and molecular mechanisms underlying effects of cigarette smoking on the immune system. The molecular pathways impacted by cigarette smoking involve NFκB, MAP kinases and histone modification. Further investigations are warranted to understand the exact mechanisms responsible for smoking-mediated immunopathology and to answer lingering questions over why cigarette smoking is always harmful rather than beneficial even though it exerts dual effects on immune responses.
BackgroundMultiple studies have investigated the effect of perioperative blood transfusion (PBT) for patients with radical cystectomy (RC), but the results have been inconsistent. We conducted a systematic review and meta-analysis to investigate the relationship between PBT and the clinical outcomes of RC patients.MethodsWe searched MEDLINE, EMBASE, the Cochrane library and BIOSIS previews to identify relevant literature for studies that focused on the relationship of PBT and outcomes of patients undergoing RC. A fixed or random effects model was used in this meta-analysis to calculate the pooled hazard ratio (HR) with 95% confidence intervals (CIs).ResultsA total of 7080 patients in 6 studies matched the selection criteria. Aggregation of the data suggested that PBT in patients who underwent RC correlated with increased all-cause mortality, cancer-specific mortality and cancer recurrence. The combined HRs were 1.19 (n = 6 studies, 95% CI: 1.11–1.27, Z = 4.71, P<0.00001), 1.17 (n = 4 studies, 95% CI: 1.06–1.30, Z = 3.06, P = 0.002), 1.14 (n = 3 studies, 95% CI: 1.03–1.27, Z = 2.50, P = 0.01), respectively. The all-cause mortality associated with PBT did not vary by the characteristics of the study, including number of study participants, follow-up period and the median blood transfusion ratio of the study.ConclusionOur data showed that PBT significantly increased the risks of all-cause mortality, cancer-specific mortality and cancer recurrence in patients undergoing RC for bladder cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.