Despite advances in therapeutic interventions and supportive care, the morbidity and mortality associated with cancer have remained significant. Thus, there is a need for newer and more powerful anti-tumor agents. The search for new anti-tumor compounds originating from natural resources is a promising research area. Animals living in polluted environments are a potent source of anti-tumor agents. Under polluted milieus, species such as crocodiles, feed on rotten meat, are exposed to heavy metals, endure high levels of radiation, and are among the very few species to survive the catastrophic Cretaceous-Tertiary extinction event with a prolonged lifespan. Thus, it is reasonable to speculate that animals such as crocodiles have developed mechanisms to defend themselves against cancer. The discovery of antitumor activity in animals such as crocodiles, whales, sharks, etc. will stimulate research in finding therapeutic molecules from unusual sources, and has potential for the development of novel antitumor compound(s) that may also overcome current drug resistance. Nevertheless, intensive research in the next few years will be required to realize these expectations.
BackgroundCancer remains a global threat resulting in significant morbidity and mortality despite advances in therapeutic interventions, suggesting urgency for identification of anticancer agents. Crocodiles thrive in polluted habitat, feed on germ-infested meat, are exposed to carcinogenic heavy metals, are the very few species to survive the catastrophic Cretaceous–Paleogene extinction event, yet have a prolonged lifespan and rarely been reported to develop cancer. Therefore, we hypothesised that animals living in polluted environments such as crocodiles possess anticancer molecules/mechanisms.MethodsCrocodylus porosus was procured, blood collected, dissected and lysates prepared from internal organs. Organ lysates and sera were tested for growth inhibition, cytotoxic effects and cell survival against HeLa, PC3 and MCF7 cells and subjected to liquid chromatography mass spectrometry. RNA transcriptome analysis and differential gene analysis were performed using Galaxy Bioinformatics.ResultsSera exhibited potent growth inhibition and cytotoxic effects against cancer cells. 80 molecules were detected from C. porosus and 19 molecules were putatively identified. Additionally, more than 100 potential anticancer peptides were identified from sera using bioinformatics based on peptide amino acid composition, binary profile, dipeptide composition and pseudo-amino acid composition. Following transcriptome analysis, 14 genes in treated HeLa cells, 51 genes in treated MCF7 cells and 2 genes in treated PC3 cells, were found to be expressed, compared with untreated controls.ConclusionAnimals residing in polluted milieus are an unexploited source for prospective pharmaceutical drugs, and could lead to identification of novel antitumour compound(s) and/or further understanding of the mechanisms of cancer resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.