Malware is a blanket term for Trojan, viruses, spyware, worms, and other files that are purposely created to harm computers, mobile devices, or computer networks. Malware commonly steals, encrypts, damages, and causes a mess in these devices. The growth of malware attacks has a consequence on the growth and attractiveness of mobile features in mobile devices. Most malware research aims to probe the different methods of preventing, analysing, and detecting malware attacks. This paper aims to demonstrate an exhaustive knowledge map of the Android malware by collecting a ten (10) year dataset from the Web of Science database. A bibliometric analysis was employed for analysing articles published between 2010 and 2019. Using the keyword "malware", 5622 articles were retrieved. After scrutinising with the keywords of "Android malware", 1278 articles were then collected. This study provides an overview of the articles, productivity, research area, the Web of Science categories, authors, high-cited articles, institutions, and impact journals examining malware. Research activities are continued by placing terms in the classification of malware detection systems that outline important areas in malware research. From the analysis, it can be concluded that the highest number of publications focusing on malware studies came from the continent of Asia. Additionally, this study discusses the challenges of malware studies in the recent research studies as well as the future direction.
The evolution of malware is causing mobile devices to crash with increasing frequency. Therefore, adequate security evaluations that detect Android malware are crucial. Two techniques can be used in this regard: Static analysis, which meticulously examines the full codes of applications, and dynamic analysis, which monitors malware behaviour. While both perform security evaluations successfully, there is still room for improvement. The goal of this research is to examine the effectiveness of static analysis to detect Android malware by using permission-based features. This study proposes machine learning with different sets of classifiers was used to evaluate Android malware detection. The feature selection method in this study was applied to determine which features were most capable of distinguishing malware. A total of 5,000 Drebin malware samples and 5,000 Androzoo benign samples were utilised. The performances of the different sets of classifiers were then compared. The results indicated that with a TPR value of 91.6%, the Random Forest algorithm achieved the highest level of accuracy in malware detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.