In this study we examined changes to the human gut microbiome resulting from an eight-week intervention of either cardiorespiratory exercise (CRE) or resistance training exercise (RTE). Twenty-eight subjects (21 F; aged 18–26) were recruited for our CRE study and 28 subjects (17 F; aged 18–33) were recruited for our RTE study. Fecal samples for gut microbiome profiling were collected twice weekly during the pre-intervention phase (three weeks), intervention phase (eight weeks), and post-intervention phase (three weeks). Pre/post VO2max, three repetition maximum (3RM), and body composition measurements were conducted. Heart rate ranges for CRE were determined by subjects’ initial VO2max test. RTE weight ranges were established by subjects’ initial 3RM testing for squat, bench press, and bent-over row. Gut microbiota were profiled using 16S rRNA gene sequencing. Microbiome sequence data were analyzed with QIIME 2. CRE resulted in initial changes to the gut microbiome which were not sustained through or after the intervention period, while RTE resulted in no detectable changes to the gut microbiota. For both CRE and RTE, we observe some evidence that the baseline microbiome composition may be predictive of exercise gains. This work suggests that the human gut microbiome can change in response to a new exercise program, but the type of exercise likely impacts whether a change occurs. The changes observed in our CRE intervention resemble a disturbance to the microbiome, where an initial shift is observed followed by a return to the baseline state. More work is needed to understand how sustained changes to the microbiome occur, resulting in differences that have been reported in cross sectional studies of athletes and non-athletes.
Multiple myeloma is a treatable, but currently incurable, hematological malignancy of plasma cells characterized by diverse and complex tumor genetics for which precision medicine approaches to treatment are lacking. The MMRF CoMMpass study is a longitudinal, observational clinical study of newly diagnosed multiple myeloma patients where tumor samples are characterized using whole genome, exome, and RNA sequencing at diagnosis and progression, and clinical data is collected every three months. Analyses of the baseline cohort identified genes that are the target of recurrent gain- and loss-of-function events. Consensus clustering identified 8 and 12 unique copy number and expression subtypes of myeloma, respectively, identifying high-risk genetic subtypes and elucidating many of the molecular underpinnings of these unique biological groups. Analysis of serial samples showed 25.5% of patients transition to a high-risk expression subtype at progression. We observed robust expression of immunotherapy targets in this subtype, suggesting a potential therapeutic option.
Host-associated bacteria and fungi, comprising the microbiota, are critical to host health. In the airways, the composition and diversity of the mucosal microbiota of patients are associated with airway health status. However, the relationship between airway microbiota and respiratory inflammation is not well-understood. Chronic rhinosinusitis (CRS) is a complex disease that affects up to 14% of the US population. Previous studies have shown decreased microbial diversity in CRS patients and enrichment of either Staphylococcus aureus or Pseudomonas aeruginosa. Although bacterial community composition is variable across CRS patients, Malassezia is a dominant fungal genus in the upper airways of the majority of healthy and CRS subjects. We hypothesize that distinct bacterial-fungal interactions differentially influence host mucosal immune response. Thus, we investigated in vitro and in vivo interactions between Malassezia sympodialis, P. aeruginosa, and S. aureus. The in vitro interactions were evaluated using the modified Kirby-Bauer Assay, Crystal Violet assay for biofilm, and FISH. A pilot murine model of acute sinusitis was used to investigate relationships with the host immune response. S. aureus and P. aeruginosa were intranasally instilled in the presence or absence of M. sympodialis (n = 66 total mice; 3-5/group). Changes in the microbiota were determined using 16S rRNA gene sequencing and host immune response was measured using quantitative real-time PCR (qRT-PCR). In vitro, only late stage planktonic P. aeruginosa and its biofilms inhibited M. sympodialis. Co-infection of mice with M. sympodialis and P. aeruginosa or S. aureus differently influenced the immune response. In co-infected mice, we demonstrate different expression of fungal sensing (Dectin-1), allergic responses (IL-5, and IL-13) and inflammation (IL-10, and IL-17) in murine sinus depending on the bacterial species that co-infected with M. sympodialis (p < 0.05). The pilot results suggest that species-specific interactions in airway-associated microbiota may be implicated Lee et al. Host-Microbiome Interactions in Airway driving immune responses. The understanding of the role of bacterial-fungal interactions in CRS will contribute to development of novel therapies toward manipulation of the airway microbiota.
BackgroundHealth care–associated Staphylococcus aureus infections are declining but remain common. Conversely, rates of community-associated infections have not decreased because of the inadequacy of public health mechanisms to control transmission in a community setting. Our long-term goal is to use risk-based information from empirical socio-cultural-biological evidence of carriage and transmission to inform intervention strategies that reduce S aureus transmission in the community. Broad differences in social interactions because of cultural affiliation, travel, and residency patterns may impact S aureus carriage and transmission, either as risk or as protective factors.ObjectiveThis study aims to (1) characterize S aureus carriage rates and compare circulating pathogen genotypes with those associated with disease isolated from local clinical specimens across resident groups and across Hispanic and non-Hispanic white ethnic groups and (2) evaluate social network relationships and social determinants of health-based risk factors for their impact on carriage and transmission of S aureus.MethodsWe combine sociocultural survey approaches to population health sampling with S aureus carriage and pathogen genomic analysis to infer transmission patterns. Whole genome sequences of S aureus from community and clinical sampling will be phylogenetically compared to determine if strains that cause disease (clinical samples) are representative of community genotypes. Phylogenetic comparisons of strains collected from participants within social groups can indicate possible transmission within the group. We can therefore combine transmission data with social determinants of health variables (socioeconomic status, health history, etc) and social network variables (both egocentric and relational) to determine the extent to which social relationships are associated with S aureus transmission.ResultsWe conducted a first year pilot test and feasibility test of survey and biological data collection and analytic procedures based on the original funded design for this project (#NIH U54MD012388). That design resulted in survey data collection from 336 groups and 1337 individuals. The protocol, described below, is a revision based on data assessment, new findings for statistical power analyses, and refined data monitoring procedures.ConclusionsThis study is designed to evaluate ethnic-specific prevalence of S aureus carriage in a US border community. The study will also examine the extent to which kin and nonkin social relationships are concordant with carriage prevalence in social groups. Genetic analysis of S aureus strains will further distinguish putative transmission pathways across social relationship contexts and inform our understanding of the correspondence of S aureus reservoirs across clinical and community settings. Basic community-engaged nonprobabilistic sampling procedures provide a rigorous framework for completion of this 5-year study of the social and cultural parameters of S aureus carriage and transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.