A novel rotavirus strain (Dhaka6) isolated from a 21-year-old Bangladeshi male patient was characterized by sequence analysis of its VP7 and VP4 gene segments. Phylogenetic analysis of the VP7 gene of the Dhaka6 strain revealed a common evolutionary lineage with porcine G11 rotavirus strains. This isolate is the first reported G11 rotavirus strain infecting a human host. Comparison of the VP4 gene sequences with all currently recognized 24 different P genotypes revealed only low nucleotide (54 to 71%) and amino acid (52 to 76%) sequence identities. This lack of high sequence similarity in the VP4 gene indicates that the Dhaka6 isolate represents a new group A rotavirus P genotype, to which we propose assignment of the designation P[25].
Electrostatic redox probes interaction has been widely rendered for DNA quantification. We have established a proof-of-principle by using the ruthenium hexaamine molecule [Ru(NH(3))(6)](3+). We have applied this method for real-time electrochemical monitoring of a loop mediated isothermal amplification (LAMP) amplicon of target genes of Escherichia coli and Staphylococcus aureus by square wave voltammetry (SWV). Ruthenium hexaamine interaction with free DNAs in solution without being immobilized onto the biochip surface enabled us to discard the time-consuming overnight probe immobilization step in DNA quantification. We have measured the changes in the cathodic current signals using screen printed low-cost biochips both in the presence and the absence of LAMP amplicons of target DNAs in the solution-phase. By using this novel probe, we successfully carried out the real-time isothermal amplification and detection in less than 30 min for S. aureus and E. coli with a sensitivity up to 30 copies μL(-1) and 20 copies μL(-1), respectively. The cathode peak height of the current was related to the extent of amplicon formation and the amount of introduced template genomic DNA. Importantly, since laborious probe immobilization is not necessary at all, and both the in vitro amplification and real-time monitoring are performed in a single polypropylene tube using a single biochip, this novel approach could avoid all potential cross-contamination in the whole procedure.
This study reports a strategy to temporarily mask arginine residues within antimicrobial peptides (AMPs) with methoxy poly(ethylene glycol) (mPEG). PEGylation protects AMPs from serum proteases, and can be released at a pharmaceutically-relevant rate. Fully active and unmodified (i.e., native) AMPs are released with time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.