A natural predominant flavanone naringenin, especially abundant in citrus fruits, has a wide range of pharmacological activities. The search for antiproliferative agents that reduce skin carcinoma is a task of great importance. The objective of this study was to analyze the anti-proliferative and apoptotic mechanism of naringenin using MTT assay, DNA fragmentation, nuclear condensation, change in mitochondrial membrane potential, cell cycle kinetics and caspase-3 as biomarkers and to investigate the ability to induce reactive oxygen species (ROS) initiating apoptotic cascade in human epidermoid carcinoma A431 cells. Results showed that naringenin exposure significantly reduced the cell viability of A431 cells (p<0.01) with a concomitant increase in nuclear condensation and DNA fragmentation in a dose dependent manner. The intracellular ROS generation assay showed statistically significant (p<0.001) dose-related increment in ROS production for naringenin. It also caused naringenin-mediated epidermoid carcinoma apoptosis by inducing mitochondrial depolarization. Cell cycle study showed that naringenin induced cell cycle arrest in G0/G1 phase of cell cycle and caspase-3 analysis revealed a dose dependent increment in caspase-3 activity which led to cell apoptosis. This study confirms the efficacy of naringenin that lead to cell death in epidermoid carcinoma cells via inducing ROS generation, mitochondrial depolarization, nuclear condensation, DNA fragmentation, cell cycle arrest in G0/G1 phase and caspase-3 activation.
Polypyrrole (PPy) and Polypyrrole/MoS2 (PPy/MoS2) nanocomposites were successfully prepared, characterized and studied for ammonia sensing properties. The as-prepared PPy and PPy/MoS2 nanocomposites were confirmed by FTIR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) techniques. The ammonia sensing properties of PPy and PPy/MoS2 nanocomposites were studied in terms of change in DC electrical conductivity on exposure to ammonia vapors followed by ambient air at room temperature. It was observed that the incorporation of MoS2 in PPy showed high sensitivity, significant stability and excellent reversibility. The enhanced sensing properties of PPy/MoS2 nanocomposites could be attributed to comparatively high surface area, appropriate sensing channels and efficiently available active sites. The sensing mechanism is explained on the basis of simple acid-base chemistry of polypyrrole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.