Abstract— Overweight in childhood sets the stage for a lifelong struggle with weight and eating and raises the risk of health problems, such as obesity, diabetes mellitus, hypertension, sleep apnea, and heart disease. Research from multiple disciplinary fields has identified scores of contributing factors. Efforts to integrate these factors into a single “big picture” have been hampered by the challenges of constructing theoretical models that are both comprehensive and developmentally adaptable. This article reviews select genetic and environmental factors influencing childhood overweight and obesity, then explicates an ecological model mapping these and other factors. The Six‐Cs model extends previous theoretical work on childhood weight imbalance by acknowledging dimensions of factors specific to heredity as well as the environment, to activity as well as nutrition, to resources and opportunities as well as practices, and to development from birth through adolescence. This article concludes by discussing the model’s policy relevance and identifying important next steps for transdisciplinary research concerning child overweight and obesity.
The immune system of the infant is functionally immature and naïve. Human milk contains bioactive proteins, lipids, and carbohydrates that protect the newborn and stimulate innate and adaptive immune development. This review will focus on the role human milk oligosaccharides (HMO) play in neonatal gastrointestinal and systemic immune development and function. For the past decade, intense research has been directed at defining the complexity of oligosaccharides in the milk of many species and is beginning to delineate their diverse functions. These studies have shown that human milk contains a higher concentration as well as a greater structural diversity and degree of fucosylation than the milk oligosaccharides in other species, particularly bovine milk from which many infant formulae are produced. The commercial availability of large quantities of certain HMO has furthered our understanding of the functions of specific HMO, which include protecting the infant from pathogenic infections, facilitating the establishment of the gut microbiota, promoting intestinal development, and stimulating immune maturation. Many of these actions are exerted through carbohydrate-carbohydrate interactions with pathogens or host cells. Two HMOs, 2′-fucosyllactose (2′FL) and lacto-N-neotetraose (LNnT), have recently been added to infant formula. Although this is a first step in narrowing the compositional gap between human milk and infant formula, it is unclear whether 1 or 2 HMO will recapitulate the complexity of actions exerted by the complex mixture of HMO ingested by breastfed infants. Thus, as more HMO become commercially available, either isolated from bovine milk or chemically or microbially synthesized, it is anticipated that more oligosaccharides will be added to infant formula either alone or in combination with other prebiotics.
BackgroundGut microbiota and the host exist in a mutualistic relationship, with the functional composition of the microbiota strongly affecting the health and well-being of the host. Thus, it is important to develop a synthetic approach to study the host transcriptome and the microbiome simultaneously. Early microbial colonization in infants is critically important for directing neonatal intestinal and immune development, and is especially attractive for studying the development of human-commensal interactions. Here we report the results from a simultaneous study of the gut microbiome and host epithelial transcriptome of three-month-old exclusively breast- and formula-fed infants.ResultsVariation in both host mRNA expression and the microbiome phylogenetic and functional profiles was observed between breast- and formula-fed infants. To examine the interdependent relationship between host epithelial cell gene expression and bacterial metagenomic-based profiles, the host transcriptome and functionally profiled microbiome data were subjected to novel multivariate statistical analyses. Gut microbiota metagenome virulence characteristics concurrently varied with immunity-related gene expression in epithelial cells between the formula-fed and the breast-fed infants.ConclusionsOur data provide insight into the integrated responses of the host transcriptome and microbiome to dietary substrates in the early neonatal period. We demonstrate that differences in diet can affect, via gut colonization, host expression of genes associated with the innate immune system. Furthermore, the methodology presented in this study can be adapted to assess other host-commensal and host-pathogen interactions using genomic and transcriptomic data, providing a synthetic genomics-based picture of host-commensal relationships.
Objectives This study tested the hypothesis that the fecal bacterial genera of breast-fed (BF) and formula-fed (FF) infants differ and that human milk oligosaccharides (HMO) modulate the microbiota of BF infants. Methods Fecal samples were obtained from BF (n = 16) or FF (n = 6) infants at 3-month postpartum. Human milk were collected on the same day when feces were collected. The microbiota was assessed by pyrosequencing of bacterial 16S rRNA genes. HMO were measured by HPLC-Chip time-of-flight mass spectrometry. Results The overall microbiota of BF differed from that of FF (P = 0.005). Compared to FF, BF had higher relative abundances of Bacteroides, lower proportions of Clostridium XVIII, Lachnospiracea incertae sedis, Streptococcus, Enterococcus and Veillonella (P < 0.05). Bifidobacterium predominated in both BF and FF infants, with no difference in abundance between the two groups. The most abundant HMO were lacto-N-tetraose + lacto-N-neotetraose (LNT + LNnT, 22.6%), followed by 2′-fucosyllactose (2′FL, 14.5%) and lacto-N-fucopentaose I (LNFP I, 9.5%). Partial least squares regression of HMO and microbiota showed several infant fecal bacterial genera could be predicted by their mothers’ HMO profiles and the important HMO for the prediction of bacterial genera were identified by variable importance in the projection scores. Conclusions These results strengthen the established relationship between HMO and the infant microbiota, identify statistical means whereby infant bacterial genera can be predicted by milk HMO. Future studies are needed to validate these findings and determine if supplementation of formula with defined HMO could selectively modify the gut microbiota.
Free milk oligosaccharides (OS) is a major component of mammalian milk. Swine are important agricultural species and biomedical models. Despite their importance, little is known of the OS profile of porcine milk. Herein, the porcine milk glycome was elucidated and monitored over the entire lactation period by liquid chromatography profiling and structural determination with mass spectrometry. Milk was collected from second parity sows (n=3) at farrowing and on days 1, 4, 7 and 24 of lactation. Twenty-nine distinct porcine milk oligosaccharides (pMO) were identified. The pMO are highly sialylated, which is more similar to bovine milk than human milk OS. Six fucosylated pMO were detected at low levels in porcine milk, making it more similar to human milk than bovine. In general, the pMO content was highest in milk collected at farrowing and day 1 of lactation, decreased during early lactation, but then rose at day 24, however, the pMO displayed different patterns of variation across lactation. In summary, porcine milk contains both acidic (sialylated) and neutral (fucosylated) OS, but sialic-acid containing OS predominate throughout lactation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.