We designed a study to provide reversibility and comparative injury data for several candidate urinary biomarkers of kidney injury in the United States Food and Drug Administration biomarker qualification process. The nephrotoxin gentamicin was given to rats once on each of three days and the animals were killed during dosing or over the following 42 days. Between days one and three, all biomarkers except albumin were elevated, peaked at day 7, and returned to control levels by day 10 (μ- and α-glutathione S-transferases, and renal papillary antigen-1) or day 15 (kidney injury molecule-1, lipocalin-2, osteopontin, and clusterin). All biomarkers performed better during injury than during recovery except osteopontin, which performed equally well in both time periods. During the evolution of injury, kidney injury molecule-1, renal papillary antigen-1, and clusterin best mirrored the histopathologic lesions. During injury resolution, kidney injury molecule-1, osteopontin, and blood urea nitrogen best reflected recovery. Based on histopathology, necrosis, or apoptosis scoring, kidney injury molecule-1 was the best biomarker of overall renal injury. Evaluation by regeneration score showed that renal papillary antigen-1 best reflected tubular and/or collecting duct regeneration, especially during recovery. Thus, these biomarkers performed with different effectiveness when evaluated by individual pathological processes such as necrosis, apoptosis, and regeneration.
Mild injury of the exocrine pancreas is often asymptomatic and can be under- or mis-diagnosed. The pancreas-enriched microRNAs miR-216a and miR-217 were evaluated as potential serum biomarkers of exocrine pancreas injury in rodent models of acute pancreatitis induced by caerulein, l-arginine, and pancreatic duct ligation. Both microRNAs showed time- and dose- relevant responses to pancreatic injury and wider dynamic ranges of response than serum amylase or lipase. Pancreas-selective microRNAs were found to be relatively sensitive serum biomarkers of pancreatic injury in rodents with potentially greater specificity than the current standard assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.