We conclude that Drad21, as a member of a cohesin complex, is required in Drosophila cultured cells and embryos for proper mitotic progression. The protein is required in cultured cells for chromosome cohesion, spindle morphology, dynamics of a chromosome passenger protein, and stability of the cohesin complex, but apparently not for normal chromosome condensation. The observation of SA instability in the absence of Drad21 implies that the expression of cohesin subunits and assembly of the cohesin complex will be tightly regulated.
Invadolysin is a metalloprotease conserved in many different organisms, previously shown to be essential in Drosophila with roles in cell division and cell migration. The gene seems to be ubiquitously expressed and four distinct splice variants have been identified in human cells but not in most other species examined. Immunofluorescent detection of human invadolysin in cultured cells reveals the protein to be associated with the surface of lipid droplets. By means of subcellular fractionation, we have independently confirmed the association of invadolysin with lipid droplets. We thus identify invadolysin as the first metalloprotease located on these dynamic organelles. In addition, analysis of larval fat-body morphological appearance and triglyceride levels in the Drosophila invadolysin mutant suggests that invadolysin plays a role in lipid storage or metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.