BackgroundHerbaceous peony (Paeonia lactiflora Pall.) is a traditional flower in China and a wedding attractive flower in worldwide. In its flower colour, yellow is the rarest which is ten times the price of the other colours. However, the breeding of new yellow P. lactiflora varieties using genetic engineering is severely limited due to the little-known biochemical and molecular mechanisms underlying its characteristic formation.ResultsIn this study, two cDNA libraries generated from P. lactiflora chimaera with red outer-petal and yellow inner-petal were sequenced using an Illumina HiSeq™ 2000 platform. 66,179,398 and 65,481,444 total raw reads from red outer-petal and yellow inner-petal cDNA libraries were generated, which were assembled into 61,431 and 70,359 Unigenes with an average length of 628 and 617 nt, respectively. Moreover, 61,408 non-redundant All-unigenes were obtained, with 37,511 All-unigenes (61.08%) annotated in public databases. In addition, 6,345 All-unigenes were differentially expressed between the red outer-petal and yellow inner-petal, with 3,899 up-regulated and 2,446 down-regulated All-unigenes, and the flavonoid metabolic pathway related to colour development was identified using the Kyoto encyclopedia of genes and genomes database (KEGG). Subsequently, the expression patterns of 10 candidate differentially expressed genes (DEGs) involved in the flavonoid metabolic pathway were examined, and flavonoids were qualitatively and quantitatively analysed. Numerous anthoxanthins (flavone and flavonol) and a few anthocyanins were detected in the yellow inner-petal, which were all lower than those in the red outer-petal due to the low expression levels of the phenylalanine ammonialyase gene (PlPAL), flavonol synthase gene (PlFLS), dihydroflavonol 4-reductase gene (PlDFR), anthocyanidin synthase gene (PlANS), anthocyanidin 3-O-glucosyltransferase gene (Pl3GT) and anthocyanidin 5-O-glucosyltransferase gene (Pl5GT).ConclusionTranscriptome sequencing (RNA-Seq) analysis based on the high throughput sequencing technology was an efficient approach to identify critical genes in P. lactiflora and other non-model plants. The flavonoid metabolic pathway and glucide metabolic pathway were identified as relatived yellow formation in P. lactiflora, PlPAL, PlFLS, PlDFR, PlANS, Pl3GT and Pl5GT were selected as potential candidates involved in flavonoid metabolic pathway, which inducing inhibition of anthocyanin biosynthesis mediated yellow formation in P. lactiflora. This study could lay a theoretical foundation for breeding new yellow P. lactiflora varieties.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-689) contains supplementary material, which is available to authorized users.
Introduction Studies have shown that high levels of the fibrinogen (FIB) are related to cognitive deficits. However, the relationship between fibrinogen and cognitive deficit after stroke remains unclear. Therefore, we explored the relationship between plasma fibrinogen and post‐stroke cognitive impairment (PSCI). Methods This study is carried out in the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China. A total of 210 patients with acute ischemic stroke were enrolled in this study. Ultimately, 134 patients completed 3‐month follow‐up. Blood samples were collected at hospital admission. Cognitive function was evaluated 3 months after stroke. All patients underwent the Mini‐Mental State Examination (MMSE) after 3 months. Results Higher levels of fibrinogen were observed in patients with post‐stroke cognitive impairment compared with the non‐PSCI group (p < .001). Additionally, elevated plasma fibrinogen levels were independently associated with PSCI (odds ratio [OR] = 2.000, 95% CI 1.062–3.770 p = .032). The plasma fibrinogen levels were negatively correlated with the 3‐month MMSE scores (r = −.171, p = .048). In a multivariate linear regression, FIB was negatively associated with the 3‐month MMSE scores after adjustment for the other variables (β = −0.782, p = .035). Conclusion High levels of plasma fibrinogen were associated with the presence and severity of PSCI.
PurposePopulation-based studies have revealed a high prevalence of cognitive impairment after stroke. We aimed to determine the impact of serum magnesium (Mg2+) levels on the occurrence of poststroke cognitive impairment (PSCI).Patients and methodsAcute ischemic stroke patients (n = 327) were enrolled in our study and serum Mg2+ levels were assessed on admission. The cognitive performance of each patient was evaluated using the Mini–Mental State Examination (MMSE) at a 1-month follow-up visit.ResultsOne hundred five (32.1%) patients were diagnosed with PSCI at 1-month poststroke. The serum Mg2+ levels in both the PSCI group and the non-PSCI group were significantly lower than those in normal control group (P<0.001). In addition, the PSCI group had lower levels of serum Mg2+ compared to the non-PSCI group (P=0.003). In the binary logistic regression analysis, a serum Mg2+ level of ≤0.82 mmol/L was significantly associated with an increased risk of developing PSCI by the 1-month follow-up (OR 2.236, 95% CI 1.232–4.058, P=0.008), as was age (OR 1.043, 95% CI 1.014–1.073, P=0.003).ConclusionOur results demonstrate the existence of a significant association between low levels of serum Mg2+ and the occurrence of PSCI 1-month poststroke, and these results suggest that low levels of serum Mg2+ on admission may serve as a risk factor for developing PSCI by 1-month poststroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.