Using aerial platforms for Non-Destructive Inspection (NDI) of large and complex structures is a growing field of interest in various industries. Infrastructures such as: buildings, bridges, oil and gas, etc. refineries require regular and extensive inspections. The inspection reports are used to plan and perform required maintenance, ensuring their structural health and the safety of the workers. However, performing these inspections can be challenging due to the size of the facility, the lack of easy access, the health risks for the inspectors, or several other reasons, which has convinced companies to invest more in drones as an alternative solution to overcome these challenges. The autonomous nature of drones can assist companies in reducing inspection time and cost. Moreover, the employment of drones can lower the number of required personnel for inspection and can increase personnel safety. Finally, drones can provide a safe and reliable solution for inspecting hard-to-reach or hazardous areas. Despite the recent developments in drone-based NDI to reliably detect defects, several limitations and challenges still need to be addressed. In this paper, a brief review of the history of unmanned aerial vehicles, along with a comprehensive review of studies focused on UAV-based NDI of industrial and commercial facilities, are provided. Moreover, the benefits of using drones in inspections as an alternative to conventional methods are discussed, along with the challenges and open problems of employing drones in industrial inspections, are explored. Finally, some of our case studies conducted in different industrial fields in the field of Non-Destructive Inspection are presented.
Detecting and identifying drones is of great interest due to the proliferation of highly manoeuverable drones with on-board sensors of increasing sensing capabilities. In this paper, we investigate the use of radars for tackling this problem. In particular, we focus on the problem of detecting rotary drones and distinguishing between single-propeller and multi-propeller drones using a micro-Doppler analysis. Two different radars were used, an ultra wideband (UWB) continuous wave (CW) C-band radar and an automotive frequency modulated continuous wave (FMCW) W-band radar, to collect micro-Doppler signatures of the drones. By taking a closer look at HElicopter Rotor Modulation (HERM) lines, the spool and chopping lines are identified for the first time in the context of drones to determine the number of propeller blades. Furthermore, a new multi-frequency analysis method using HERM lines is developed, which allows the detection of propeller rotation rates (spool and chopping frequencies) of single and multi-propeller drones. Therefore, the presented method is a promising technique to aid in the classification of drones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.