Understanding the physiological mechanism of tolerance under stress conditions is an imperative aspect of the crop improvement programme. The role of plant hormones is well-established in abiotic stress tolerance. However, the information on the role of gibberellic acid (GA) in abiotic stress tolerance in late sown wheat is still not thoroughly explored. Thus, we aimed to investigate the role of endogenous GA3 level in stress tolerance in contrasting wheat cultivars, viz., temperature-tolerant (HD 2643 and DBW 14) and susceptible (HD 2189 and HD 2833) cultivars under timely and late sown conditions. We created the variation in endogenous GA3 level by exogenous spray of GA3 and its biosynthesis inhibitor paclobutrazol (PBZ). Tolerant genotypes had higher antioxidant enzyme activity, membrane stability, and photosynthesis rate, lower lipid peroxidase activity, and better growth and yield traits under late sown conditions attributed to H2O2 content. Application of PBZ escalated antioxidant enzymes activity and photosynthesis rate, and reduced the lipid peroxidation and ion leakage in stress, leading to improved thermotolerance. GA3 had a non-significant effect on antioxidant enzyme activity, lipid peroxidation, and membrane stability. However, GA3 application increased the test weight in HD 2643 and HD 2833 under timely and late sown conditions. GA3 upregulated GA biosynthesis and degradation pathway genes, and PBZ downregulated kaurene oxidase and GA2ox gene expression. GA3 also upregulated the expression of the cell expansins gene under both timely and late sown conditions. Exogenous GA3 did not increase thermotolerance but positively affected test weight and cell expansins gene expression. No direct relationship existed between endogenous GA3 content and stress tolerance traits, indicating that PBZ could have conferred thermotolerance through an alternative mechanism instead of inhibiting GA3biosynthesis.
The RNA helicases are an important class of enzymes which are known to influence almost every aspect of RNA metabolism. The majority of RNA helicases belong to the SF2 (superfamily 2) superfamily, members of which are further categorized into three separate subfamilies i.e., the DEAD, DEAH and DExD/H-box subfamilies. In chickpea, these RNA helicases have not been characterized until now. A genome-wide analysis across the chickpea genome led to the identification of a total of 150 RNA helicase genes which included 50 DEAD, 33 DEAH and 67 DExD/H-box genes. These were distributed across all the eight chromosomes, with highest number on chromosome 4 (26) and least on chromosome 8 (8). Gene duplication analysis resulted in identification of 15 paralogous gene pairs with Ka/Ks values < 1, indicating towards the genes being under purifying selection during the course of evolution. The promoter regions of the RNA helicase genes were enriched in cis-acting elements like the light and ABA-responsive elements. The drought responsiveness of the genes was analysed by studying the expression profiles of few of these genes, in two different genotypes, the cultivated variety ICC 8261 (kabuli, C. arietinum) and the wild accession ILWC 292 (C. reticulatum), through qRT-PCR. These genotypes were selected based on their drought responsiveness in a field experiment, where it was observed that the percentage (%) reduction in relative water content (RWC) and membrane stability index (MSI) for the drought stressed plants after withholding water for 24 days, over the control or well-watered plants, was least for both the genotypes. The genes CaDEAD50 and CaDExD/H66 were identified as drought-responsive RNA helicase genes in chickpea. The protein encoded by the CaDExD/H66 gene shares a high degree of homology with one of the CLSY (CLASSY) proteins of A. thaliana. We hypothesize that this gene could possibly be involved in regulation of DNA methylation levels in chickpea by regulating siRNA production, in conjunction with other proteins like the Argonaute, RNA dependent RNA polymerases and Dicer-like proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.