Given a noisy or sampled snapshot of an infection in a large graph, can we automatically and reliably recover the truly infected yet somehow missed nodes? And, what about the seeds, the nodes from which the infection started to spread? These are important questions in diverse contexts, ranging from epidemiology to social media.In this paper, we address the problem of simultaneously recovering the missing infections and the source nodes of the epidemic given noisy data. We formulate the problem by the Minimum Description Length principle, and propose NetFill, an efficient algorithm that automatically and highly accurately identifies the number and identities of both missing nodes and the infection seed nodes.Experimental evaluation on synthetic and real datasets, including using data from information cascades over 96 million blog posts and news articles, shows that our method outperforms other baselines, scales near-linearly, and is highly effective in recovering missing nodes and sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.