The study was carried out on 19 ewes of local Awassi sheep and 12ewes local Arabi sheep in the Al-kafeel sheep station Karbala, to determine the effect of breed and some non-genetic factors such as (sex of the lamb, type of birth, age and weight of ewes at birth) on daily and total milk production and lactation period and some of milk components (fat, protein and lactose). The results showed that a significant effect (P <0.05) of the breed on milk production traits where Awassi sheep recorded the highest mean (0.91 kg , 101.63 kg , 104.86 day) compared to the Arabi sheep she was means (0.77 kg , 88.15 kg , 99.15 day) respectively. As well as in proportions of milk components with mean( 5.1 , 4.90 , 5.51) % respectively compared to the Arabi sheep (4.70 . 4.20 . 4.89) ewes with male lambs also exceeded superior ewes with female lambs in daily and total milk production and the lactation period the sex of the lamb did not affect the proportions of milk components the weight of the ewes had a significant effect (P <0.05) in milk production attributes with superior weight of ewes on lower ewes and did not affect the proportions of milk ingredients except for lactose. The type of birth and the age of the ewes did not have a significant effect in all the studied traits except for the superiority (P<0.05) of young ewes on age ewes in the fat percentage of milk.
The study was carried out on 19 ewes of local Awassi sheep and 12ewes local Arabi sheep in the Al-kafeel sheep station Karbala, to determine the effect of breed and some non-genetic factors such as (sex of the lamb, type of birth, age and weight of ewes at birth) on daily and total milk production and lactation period and some of milk components (fat, protein and lactose). The results showed that a significant effect (P <0.05) of the breed on milk production traits where Awassi sheep recorded the highest mean (0.91 kg , 101.63 kg , 104.86 day) compared to the Arabi sheep she was means (0.77 kg , 88.15 kg , 99.15 day) respectively. As well as in proportions of milk components with mean( 5.1 , 4.90 , 5.51) % respectively compared to the Arabi sheep (4.70 . 4.20 . 4.89) ewes with male lambs also exceeded superior ewes with female lambs in daily and total milk production and the lactation period the sex of the lamb did not affect the proportions of milk components the weight of the ewes had a significant effect (P <0.05) in milk production attributes with superior weight of ewes on lower ewes and did not affect the proportions of milk ingredients except for lactose. The type of birth and the age of the ewes did not have a significant effect in all the studied traits except for the superiority (P<0.05) of young ewes on age ewes in the fat percentage of milk.
Date palm silver nanoparticles are a green synthesis method used as antibacterial agents. Today, there is a considerable interest in it because it is safe, nontoxic, low costly and ecofriendly. Biofilm bacteria existing in marketed local milk is at highly risk on population health and may be life-threatening as most biofilm-forming bacteria are multidrug resistance. The goal of current study is to eradicate biofilm-forming bacteria by alternative treatment green synthesis silver nanoparticles. The biofilm formation by bacterial isolates was detected by Congo red method. The silver nanoparticles were prepared from date palm(khestawy) fruit extract. The formed nanoparticles were characterized with UV-Vis and AFM. The antibacterial activity of synthetic silver nanoparticles was evaluated by agar well diffusion method. Gram-negative bacteria isolates were E. coli in 3 isolates and Klebsiella pneumoniae in 5 isolates and all are biofilm producer. The size of synthetic green silver nanoparticles is 18 nm and the generation of silver nanoparticles was confirmed by change of date extract color from yellow to brown with an absorption maximum at 410 nm. Highly antibacterial activity of silver nanoparticles was recorded in comparison to plant extract and silver nitrate against gram-negative biofilm-forming bacteria. From this study, the antibacterial activity of date palm silver nanoparticles was more efficient to eradicate gram negative biofilm[1]forming bacteria isolated from marketed local milk
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.