We recently showed that postulated ultracompact minihalos with a steep density profile do not form in realistic simulations with enhanced initial perturbations. In this paper we assume that a small fraction of the dark matter consists of primordial black holes (PBHs) and simulate the formation of structures around them. We find that in this scenario halos with steep density profiles do form, consistent with theoretical predictions. If the rest of the dark matter consists of weakly interacting massive particles (WIMPs), we also show that WIMPs in the dense innermost part of halos surrounding the PBH would annihilate and produce a detectable gamma-ray signal. The non-detection of this signal implies that PBHs make up at most one billionth of the dark matter, provided that their mass is greater than one millionth of the mass of the Sun. Similarly, a detection of PBHs would imply that the remaining dark matter could not be WIMPs.
The detection of primordial gravitational waves, or tensor perturbations, would be regarded as compelling evidence for inflation. The canonical measure of this is the ratio of tensor to scalar perturbations, r. For single-field slow-roll models of inflation with small field excursions, the Lyth bound dictates that if the evolution of the slow-roll parameter ǫ is monotonic, the tensor-to-scalar ratio must be below observationally detectable levels. We describe how non-monotonic evolution of ǫ can evade the Lyth bound and generate observationally large r, even with small field excursions. This has consequences for the scalar power spectrum as it necessarily predicts an enhancement in the spectrum at very small scales and significant scale-dependent running at CMB scales. This effect has not been appropriately accounted for in previous analyses. We describe a mechanism that will generically produce the required behaviour in ǫ and give an example of this mechanism arising in a well-motivated small-field model. This model can produce r ≥ 0.05 while satisfying all current observational constraints.
The discovery of a void of size ∼200h −1 Mpc and average density contrast of ∼ − 0.1 aligned with the cold spot direction has been recently reported. It has been argued that, although the first-order integrated Sachs-Wolfe (ISW) effect of such a void on the cosmic microwave background is small, the second-order Rees-Sciama (RS) contribution exceeds this by an order of magnitude and can entirely explain the observed cold spot temperature profile. In this paper we examine this surprising claim using both an exact calculation with the spherically symmetric Lemaître-Tolman-Bondi metric, and perturbation theory about a background Friedmann-Robertson-Walker metric. We show that both approaches agree well with each other, and both show that the dominant temperature contribution of the postulated void is an unobservable dipole anisotropy. If this dipole is subtracted, we find that the remaining temperature anisotropy is dominated by the linear ISW signal, which is orders of magnitude larger than the second-order RS effect, and that the total magnitude is too small to explain the observed cold spot profile. We calculate the density and size of a void that would be required to explain the cold spot, and show that the probability of existence of such a void is essentially zero in ΛCDM. We identify the importance of a posteriori selection effects in the identification of the cold spot, but argue that even after accounting for them, a supervoid explanation of the cold spot is always disfavored relative to a random statistical fluctuation on the last scattering surface.
A crucial diagnostic of the ΛCDM cosmological model is the integrated Sachs-Wolfe (ISW) effect of large-scale structure on the cosmic microwave background (CMB). The ISW imprint of superstructures of size ∼ 100 h −1 Mpc at redshift z ∼ 0.5 has been detected with > 4σ significance, however it has been noted that the signal is much larger than expected. We revisit the calculation using linear theory predictions in ΛCDM cosmology for the number density of superstructures and their radial density profile, and take possible selection effects into account. While our expected signal is larger than previous estimates, it is still inconsistent by > 3σ with the observation. If the observed signal is indeed due to the ISW effect then huge, extremely underdense voids are far more common in the observed universe than predicted by ΛCDM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.