The learning with errors (LWE) problem (STOC'05) introduced by Regev is one of the fundamental problems in lattice-based cryptography. One standard strategy to solve the LWE problem is to reduce it to a unique SVP (uSVP) problem via Kannan's embedding and then apply a lattice reduction to solve the uSVP problem. There are two methods for estimating the cost for solving LWE via this strategy: the first method considers the largeness of the gap in the uSVP problem (Gama-Nguyen, Eurocrypt'08) and the second method (Alkim et al., USENIX'16) considers the shortness of the projection of the shortest vector to the Gram-Schmidt vectors. These two estimates have been investigated by Albrecht et al. (Asiacrypt'16) who present a sound analysis and show that the lattice reduction experiments fit more consistently with the second estimate. They also observe that in some cases the lattice reduction even behaves better than the second estimate perhaps due to the second intersection of the projected vector with the Gram-Schmidt vectors. In this work, we revisit the work of Alkim et al. and Albrecht et al. We first report further experiments providing more comparisons and suggest that the second estimate leads to a more accurate prediction in practice. We also present empirical evidence confirming the assumptions used in the second estimate. Furthermore, we examine the gaps in uSVP derived from the embedded lattice and explain why it is preferable to use µ = 1 for the embedded lattice. This shows there is a coherent relation between the second estimate and the gaps in uSVP. Finally, it has been conjectured by Albrecht et al. that the second intersection will not happen for large parameters. We will show that this is indeed the case: there is no second intersection as β → ∞.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.