Problem statement: In this study, attempts had been made to synthesize silver (Ag)/Poly Vinylpyrolidone (PVP) nanoparticles by ionizing radiation and at the same time overcoming some of the disadvantages previously reported by other methods such as impurities, solvent toxicity, size and distribution control and difficulty in their preparation that limits their commercialization potential. Approach: The use of this alternative method overcomes some unfavorable characteristics like long tedious and costly process, uncontrolled size and distribution. The advantages of radiation processing of the materials relative to other methods are; no metallic catalyst is required; (gives pure product), no oxidizing or reducing agent is required, the process occurs at a liquid or/and solid-state condition, fast and inexpensive, environmental friendly with controllable acquisitions. Results: Ag/PVP nanoparticles were successfully prepared in one-step by γ-irradiation technique in an aqueous system at room temperature and under ambient pressure. The Transmission of Electron Microscopy (TEM) of the as-prepared product particles ranged from 100 to around 8 nm depend on the irradiation dose value, which showed a good distribution with a controlled size as dose changed. The presence of PVP polymer was considered as an important reason that influenced the shape and distribution. The band gap energy was calculated from the UV-VIS absorption spectra. Thermal analysis TGA showed that the composite had a higher degradation temperature than the PVP alone. Conclusion: This result indicated that AgNO3 can effectively dope PVP and enhance the optical and thermal properties. In addition, γ-irradiation is an effective technique for preparing inorganic/organic nanocomposites
Problem statement: Gamma irradiation has been successfully used to prepare a spherical cadmium sulfide CdS/Poly Vinylpyrolidone (PVP) quantum dots nanoparticles with enhancement of their optical band gap energy and thermal properties at room temperature and under ambient pressure. Sodium thiosulfate was used as a sulfur source in an aqueous solution. The formation of lower band gap energy of CdS/PVP nanoparticles and thermal stability can be controlled by using different irradiation doses. TEM images showed that the CdS/PVP particle size tends to be smaller and with better distribution as irradiation dose increases. Approach: Gamma (γ) irradiation offered many advantages for the preparation of metal nanoparticles by producing large number of hydrated electrons during γ-ray irradiation, which can reduce the metal ions to zero valiant metal particles. Results: CdS/PVP nanoparticles were successfully prepared in one-step by γ-irradiation technique in an aqueous system at room temperature and under ambient pressure. The particle size was found to be less than 10 nm based on the Transmission Electron Microscopy (TEM) that depended on the irradiation doses value, which showed a well distribution with a controlled size as doses change. The presence of PVP polymer was considered an important reason that influenced the shape and the distribution of those nanoparticles. The optical band gap energy of those nanoparticles was calculated by using the UV-VIS absorption spectra. Thermal analysis TGA showed that the composite had a higher degradation temperature than the PVP alone. A possible mechanism of the formation of cadmium sulfide by irradiation system was proposed. Conclusion: This result indicated that CdSO4 can effectively dope PVP and enhance the optical and thermal properties. In addition, γ-irradiation is an effective technique for preparing inorganic/organic nanocomposites
Magnetic Ni-rich Ni–Cu nanoparticles with Ni : Cu mass ratio (S) of 2.0 and 2.6 were prepared using a mixture of polyoxyethylene (10) isooctylphenyl ether (Triton X-100) and sodium dodecyl sulfate (SDS) in a mild hydrothermal condition at 95ºC. X-ray diffractometry (XRD) showed that the nanoparticles prepared atS=2.0possessed Ni–Cu alloy characteristic whereas the characteristic was absent atS=2.6. The XRD data was enhanced by Fourier transform infrared spectroscopy (FTIR) which exhibited metal-metal (Ni–Cu) band at 455 cm−1. Based on transmission electron microscopy (TEM), the average particle sizes for the nanoparticles prepared atS=2.0and 2.6 were in the range of 19–23 nm. The as-prepared nanoparticles exhibited paramagnetic behaviour measured using a vibrating sample magnetometer (VSM) and the specific saturation magnetization decreased at the higher concentration of Ni.
Here we present additional data regarding specific doping process in nanoparticle samples of PANI. In such technique, the ionizing γirradiation and (dodecylbenzenesulfonic acid), DBSA were being used as dopants and as accelerators to the oxidizing agent to polymerize aniline monomer into conductive PANI Emeraldine Salt (ES), in which PANI was produced from its monomer by this noble methodology by a single-step process. In such synthesis technique, the interactions promote a more extended conformation of PANI chains, which leads to the improvement in solubility, the thermal stability and conductivity. Hence the dielectric and optical properties of PANI nanoparticles could be improved tremendously by incorporation of a long-chain organic acid (DBSA) as the dopant ion under the influence of γ-irradiation. It was also expected that the single step, direct double doping procedure (γ-ray and DBSA) could be used for synthesizing these nanomaterials with different long-chain dopant ions instead of the standard route of synthesizing, to avoid tedious steps involved like de-doping, re-doping etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.