Low-density polyethylene (LDPE) is ubiquitous in the packaging industry owing to its flexibility, toughness, and low cost. However, it is typically contaminated with other materials, seriously limiting options for mechanical recycling. Interest in chemical recycling techniques such as pyrolysis and hydrothermal liquefaction is growing, but most of these processes face technoeconomic challenges that have limited commercial deployment. This study concerns a hybrid chemomechanical approach using reactive twin-screw extrusion (TSE) for tailoring the molecular weight and chain structure of reclaimed LDPE. Two types of zeolite catalysts at several loading levels are evaluated over a range of processing conditions. Structural, thermal, and rheological properties of the extruded samples are investigated and compared to virgin LDPE and LDPE extruded without the catalyst. NMR spectroscopy is used to investigate changes in the structure of the polymer. LDPE extruded with microporous Y zeolite shows lower degradation temperature and increased short chain branching. Mesoporous MCM-41 also induces increased branching but has no effect on the degradation temperature. The theoretical mechanical energy input for the chemical modification is calculated by using process modeling. The demonstrated hybrid reactive extrusion process provides a potential low-cost, simple approach for repurposing LDPE-based flexible packaging as coatings and adhesives.
Plastic waste found in oceans has become a major concern because of its impact on marine organisms and human health. There is significant global interest in recycling these materials, but their reclamation, sorting, cleaning, and reprocessing, along with the degradation that occurs in the natural environment, all make it difficult to achieve high quality recycled resins from ocean plastic waste. To mitigate these limitations, various additives including clay and rubber were explored. In this study, we compounded different types of ocean-bound (o-HDPE and o-PP) and virgin polymers (v-LDPE and v-PS) with various additives including a functionalized clay, styrene-multi-block-copolymer (SMB), and ethylene-propylene-based rubber (EPR). Physical observation showed that all blends containing PS were brittle due to the weak interfaces between the polyolefin regions and the PS domains within the polymer blend matrix. Blends containing clay showed rough surfaces and brittleness because of the non-uniform distribution of clay particles in the polymer matrix. To evaluate the properties and compatibility of the blends, characterizations using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and small-amplitude oscillatory shear (SAOS) rheology were carried out. The polymer blend (v-LDPE, o-HDPE, o-PP) containing EPR showed improved elasticity. Incorporating additives such as rubber could improve the mechanical properties of polymer blends for recycling purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.