Root development and the associated acquisition of water and nutrients are an important part of weed competitiveness. Characterization of root morphological development, however, is inherently problematic because of the complexities of soil–plant interactions. In this study, we used hydroponically grown plants and digital imaging to examine root characteristics ofGlycine maxand the competing weedsSenna obtusifoliaandAmaranthus palmeri. The purpose was to define inherent differences in root length and surface area that would contribute to growth responses during the establishment phase in the field. The methodology involved growing plants for 16 to 22 d, dissecting and staining root segments, mounting subsamples on slides, and imaging using a stereomicroscope and digital camera. Microscopy was required because of the small diameters of a significant proportion of the weed roots. With plants of similar root fresh weights (4.5 to 5.0 g), counting of individual roots revealed that 5.obtusifoliaandA. palmerihad 2 and 3.7 times more roots thanG. max(4,616 and 7,781 vs. 2,120, respectively). The imaging analyses indicated that roots ofS. obtusifoliaandA. palmerihad 2.9 and 5 times more length thanG. max(10,042 and 17,192 cm vs. 3,418 cm, respectively). Furthermore, the analysis of length in different root diameter classes indicated that weed roots were noticeably finer then those ofG. max. Approximately 84% ofS. obtusifoliaroot length was contributed by roots in the 0.1- to 0.25-mm range, whereas 45% of theG. maxroots were in the 0.1- to 0.25-mm range and 48% were in the 0.25- to 0.75-mm range. In contrast, 68% ofA. palmerilength was contributed by roots smaller than 0.1 mm in diameter with 26% in the 0.1- to 0.25-mm range. Based on the expression of root characteristics observed here, root systems of these weed species would have finer roots with much greater length that would occupy a much larger volume of soil than those ofG. max. Presumably, this would result in a competitive advantage in the acquisition of water and nutrients, especially when availability is limited.
Experiments were conducted to compare germination efficiencies and vegetative growth of soybean and the competing weed species, sicklepod and Palmer amaranth, over a range of temperatures in the root zone and aerial environments. From genetic origins we hypothesized that the weeds would have a higher temperature optimum, which would help explain competitive interactions seen in the southeastern U.S. Germination experiments indicated that germination efficiency of the weeds was much more sensitive to low temperature than soybean, being markedly inhibited below 18 C. Similarly, experiments in an automated, temperature-controlled hydroponic system revealed that the weed species were less tolerant of low root zone temperature but more tolerant of high root zone temperature than soybean. At 16 C, dry weight of soybean was 74% of the control dry weight at 24 C, whereas dry weights of sicklepod and Palmer amaranth were 5 and 20% of the control, respectively. At 32 C, soybean root dry weight was only 80% of the 24 C treatment, whereas root dry weight of the weed species was not significantly different. When plants were grown at a low aerial temperature, growth of all plants was strongly inhibited] but the negative effects were somewhat more severe in the weed species than with soybean. An increase in aerial temperature from 26/22 C to 34/30 C (day/night) had a positive influence on dry matter accumulation of the weed species, stimulating sicklepod 150 to 200% and Palmer amaranth 150 to 1,600% compared to their respective controls, whereas soybean remained at about 80 to 90% of the control. All species grew taller with increasing temperature. Leaf area of the weeds increased but leaf area of soybean did not increase. Consistent with our original hypothesis, the results clearly show that the weeds, which originate from warm geographical regions, respond more negatively than soybean to low temperatures in the growth environment but more positively to high temperatures. The temperature characteristics help to explain why the intensity of weed pressure increases as the soybean growing season progresses, even after canopy closure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.