The yield potential ( Y p ) of a grain crop is the seed mass per unit ground area obtained under optimum growing conditions without weeds, pests and diseases. It is determined by the product of the available light energy and by the genetically determined properties: efficiency of light capture ( e i ), the efficiency of conversion of the intercepted light into biomass ( e c ) and the proportion of biomass partitioned into grain ( h ). Plant breeding brings h and e i close to their theoretical maxima, leaving e c , primarily determined by photosynthesis, as the only remaining major prospect for improving Y p . Leaf photosynthetic rate, however, is poorly correlated with yield when different genotypes of a crop species are compared. This led to the viewpoint that improvement of leaf photosynthesis has little value for improving Y p . By contrast, the many recent experiments that compare the growth of a genotype in current and future projected elevated [CO 2 ] environments show that increase in leaf photosynthesis is closely associated with similar increases in yield. Are there opportunities to achieve similar increases by genetic manipulation? Six potential routes of increasing e c by improving photosynthetic efficiency were explored, ranging from altered canopy architecture to improved regeneration of the acceptor molecule for CO 2 . Collectively, these changes could improve e c and, therefore, Y p by c . 50%. Because some changes could be achieved by transgenic technology, the time of the development of commercial cultivars could be considerably less than by conventional breeding and potentially, within 10-15 years.
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects.We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives. Geosphere-Biosphere Program (IGBP) and DIVERSITAS, the TRY database (TRY-not an acronym, rather a statement of sentiment; https ://www.try-db.org; Kattge et al., 2011) was proposed with the explicit assignment to improve the availability and accessibility of plant trait data for ecology and earth system sciences. The Max Planck Institute for Biogeochemistry (MPI-BGC) offered to host the database and the different groups joined forces for this community-driven program. Two factors were key to the success of TRY: the support and trust of leaders in the field of functional plant ecology submitting large databases and the long-term funding by the Max Planck Society, the MPI-BGC and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, which has enabled the continuous development of the TRY database.
The effects of elevated [CO2] on 25 variables describing soybean physiology, growth and yield are reviewed using meta‐analytic techniques. This is the first meta‐analysis to our knowledge performed on a single crop species and summarizes the effects of 111 studies. These primary studies include numerous soybean growth forms, various stress and experimental treatments, and a range of elevated [CO2] levels (from 450 to 1250 p.p.m.), with a mean of 689 p.p.m. across all studies. Stimulation of soybean leaf CO2 assimilation rate with growth at elevated [CO2] was 39%, despite a 40% decrease in stomatal conductance and a 11% decrease in Rubisco activity. Increased leaf CO2 uptake combined with an 18% stimulation in leaf area to provide a 59% increase in canopy photosynthetic rate. The increase in total dry weight was lower at 37%, and seed yield still lower at 24%. This shows that even in an agronomic species selected for maximum investment in seed, several plant level feedbacks prevent additional investment in reproduction, such that yield fails to reflect fully the increase in whole plant carbon uptake. Large soil containers (> 9 L) have been considered adequate for assessing plant responses to elevated [CO2]. However, in open‐top chamber experiments, soybeans grown in large pots showed a significant threefold smaller stimulation in yield than soybeans grown in the ground. This suggests that conclusions about plant yield based on pot studies, even when using very large containers, are a poor reflection of performance in the absence of any physical restriction on root growth. This review supports a number of current paradigms of plant responses to elevated [CO2]. Namely, stimulation of photosynthesis is greater in plants that fix N and have additional carbohydrate sinks in nodules. This supports the notion that photosynthetic capacity decreases when plants are N‐limited, but not when plants have adequate N and sink strength. The root : shoot ratio did not change with growth at elevated [CO2], sustaining the charge that biomass allocation is unaffected by growth at elevated [CO2] when plant size and ontogeny are considered.
(A.R.) While increasing temperatures and altered soil moisture arising from climate change in the next 50 years are projected to decrease yield of food crops, elevated CO 2 concentration ([CO 2 ]) is predicted to enhance yield and offset these detrimental factors. However, C 4 photosynthesis is usually saturated at current [CO 2 Global climate change, in the form of rising temperature and altered soil moisture, is projected to decrease the yield of food crops over the next 50 years (Thomson et al., 2005). Meanwhile, the simultaneous increase in CO 2 concentration ([CO 2 ]) is predicted to stimulate crop production and offset these detrimental components of climate change (Thomson et al., 2005). This encouraging projection results from speciesspecific ''CO 2 fertilization'' factors in yield models (Phillips et al., 1996;Brown and Rosenberg, 1999;Parry et al., 2004;Thomson et al., 2005). These simulate the enhancements of net CO 2 assimilation rate (A) and yield observed, for both C 3 (17%-29%) and C 4 crops (6%-10%), under elevated [CO 2 ] in controlled environment studies (Kimball, 1983;Allen et al., 1987).While early projections of ''[CO 2 ] fertilization'' were based on studies in glasshouses and other protected environments, Free-Air Concentration Enrichment (FACE) experiments are fully open-air trials of crop performance. They provide realistic simulations of future growing conditions and provide perhaps the best opportunity to requantify CO 2 fertilization effects and elucidate the mechanism of crop response. FACE experiments on the C 3 crops rice (Oryza sativa), wheat (Triticum aestivum), and soybean (Glycine max) have observed smaller increases in yield than were predicted from the early chamber studies Long et al., 2005;Morgan et al., 2005). Yet the primary response mechanisms of C 3 crops have not been controversial . First, elevated [CO 2 ] directly stimulates A, growth, and yield by decreasing photorespiration and accelerating carboxylation by Rubisco. Second, it decreases stomatal aperture, which can reduce plant water use and indirectly enhance performance by ameliorating water stress. In contrast, the response of C 4 crops to future elevated [CO 2 ] is uncertain. In C 4 plants, Rubisco is
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.