In this research, the synergistic behavior of magnetorheological elastomers containing nickel and cobalt along with iron particles as magnetically polarizable fillers is examined experimentally under dynamic shear loading. Two different types of magnetorheological elastomer were fabricated having equal proportions of iron and nickel in one kind, and iron and cobalt in the other. The concentrations of magnetic particles in each type are varied from 10% to 40% and investigated for several frequencies, displacement amplitude, and magnetic field values. A test assembly with moveable permanent magnets was used to vary magnetic field density. Force displacement hysteresis loops were studied for dynamic response of magnetorheological elastomers (MREs). It was observed that MREs showed a linear behavior at low strains while nonlinearity increased with increasing strain. The percentage filler content and frequency increased the MRE stiffness whereas it decreased with displacement amplitude. The computed maximum magnetorheological (MR) effect was 55.56 percent. While MRE with iron and cobalt gave the highest effective stiffness, MRE with iron and nickel gave the highest MR effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.