In this study, synergetic-based adaptive control design is developed for trajectory tracking control of joint position in knee-rehabilitation system. This system is often utilized for rehabilitation of patients with lower-limb disabilities. However, this knee-assistive system is subject to uncertainties when applied to different persons undertaking exercises. This is due to the different masses and inertias of different persons. In order to cope with these uncertainties, an adaptive scheme has been proposed. In this study, an adaptive synergetic control scheme is established, and control laws are developed to ensure stable knee exoskeleton system subjected to uncertainties in parameters. Based on Lyapunov stability analysis, the developed adaptive synergetic laws are used to estimate the potential uncertainties in the coefficients of the knee-assistive system. These developed control laws guarantee the stability of the knee rehabilitation system controlled by the adaptive synergetic controller. In this study, particle swarm optimization (PSO) algorithm is introduced to tune the design parameters of adaptive and non-adaptive synergetic controllers, in order to optimize their tracking performances by minimizing an error-cost function. Numerical simulations are conducted to show the effectiveness of the proposed synergetic controllers for tracking control of the exoskeleton knee system. The results show that compared to classical synergetic controllers, the adaptive synergetic controller can guarantee the boundedness of the estimated parameters and hence avoid drifting, which in turn ensures the stability of the controlled system in the presence of parameter uncertainties.
Servo-hydraulic systems have been extensively employed in various industrial applications. However, these systems are characterized by their highly complex and nonlinear dynamics, which complicates the control design stage of such systems. In this paper, an extended wavelet functional link neural network (EWFLNN) is proposed to control the displacement response of the servo-hydraulic system. To optimize the controller's parameters, a recently developed optimization technique, which is called the modified sine cosine algorithm (M-SCA), is exploited as the training method. The proposed controller has achieved remarkable results in terms of tracking two different displacement signals and handling external disturbances. From a comparative study, the proposed EWFLNN controller has attained the best control precision compared with those of other controllers, namely, a proportional-integralderivative (PID) controller, an artificial neural network (ANN) controller, a wavelet neural network (WNN) controller, and the original wavelet functional link neural network (WFLNN) controller. Moreover, compared to the genetic algorithm (GA) and the original sine cosine algorithm (SCA), the M-SCA has shown better optimization results in finding the optimal values of the controller's parameters.
Due to the variability in the physical and chemical properties of the composite material, understanding the dynamics of the drilling process in this material can be challenging. One of the most significant issues that can result from size and shape abnormalities in the hole during the drilling process is delamination. These errors could be unacceptable and lower the product's quality. In order to regulate the drilling process of Glass Fiber Reinforced Plastic (GFRP) composite, this work proposes an optimal Proportional-Integral-Derivative (PID) controller based on Enhanced Flower Pollination Algorithm (EFPA). Based on the Integral Time of Absolute Error (ITAE) index, the proposed tuning approach is compared with the traditional Flower Pollination Algorithm (FPA) and Particle Swarm Optimization (PSO). In terms of time response specifications and error performance index. Simulation results using MATLAB demonstrate the superiority of the proposed EFPA over conventional FPA and PSO for improving the tuning of the PID for controlling the drilling process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.