Eph receptors play important roles in axon guidance at the midline. In the auditory system, growth of axons across the midline is an important determinant of auditory function. The avian cochlear nucleus, n. magnocellularis (NM), makes bilateral projections to its target, n. laminaris (NL). We examined the time course of NM axon growth toward the midline, the expression of Eph proteins at the midline during this growth, and the effects of Eph receptor misexpression on axonal growth across the midline. We found that NM axons reach the midline at E4. At this age, EphB receptors are expressed at the ventral floor plate. Expression extends dorsally to the ventricular zone beginning at E5. NM axons thus grow across the midline at a time when EphB receptor expression levels are low. Overexpression of EphB2 at E2 resulted in misrouted axons that deflected away from transfected midline cells. This effect was observed when midline cells were transfected but not when NM cells alone were transfected, suggesting that EphB2 acts non-cell autonomously and through reverse signaling. These data suggest an inhibitory role for midline Eph receptors, in which low levels permit axon growth and subsequently high levels prohibit growth after axons have crossed the midline.
The cochleovestibular ganglion of the chick differentiates at early embryonic stages as VIIIth nerve axons enter the brainstem. The tonotopic organization of the auditory portion of the VIIIth nerve can be discerned at the time axons initially reach their brainstem targets. The mechanisms underlying this early organization are not known. Eph receptor tyrosine kinases and their ligands, the ephrins, have a demonstrated role in guiding axons to topographically appropriate locations in other areas of the nervous system. In order to begin to test whether Eph proteins have a similar role in the auditory system, we investigated the tonotopic expression of several Eph receptors and ephrins in the VIIIth nerve during embryonic ages corresponding to the initial innervation of the auditory brainstem. Expression patterns of EphA4, EphB2, EphB5, ephrin-A2, and ephrin-B1 were evaluated immunohistochemically at embryonic days 4 through 10. Protein expression was observed in the cochlear ganglion and VIIIth nerve axons at these ages. EphB5, ephrin-A2, and ephrin-B1 were expressed throughout the nerve. EphA4 and EphB2 had complementary expression patterns within the nerve, with EphA4 expression higher in the dorsolateral part of the nerve and EphB2 expression higher in the ventromedial part of the nerve. These regions may correspond to auditory and vestibular components, respectively. Moreover, EphA4 expression was higher toward the low-frequency region of both the centrally and peripherally projecting branches of cochlear ganglion cells. Regional variation of Eph protein expression may influence the target selection and topography of developing VIIIth nerve projections.
This paper describes the development and initial evaluation of a human cell assay to identify potentially efficacious agents for preventing melanoma. Four human cell lines were used: normal melanocytes, a radial growthphase-like melanoma cell line (WM3211), a vertical growthphase-like melanoma cell line (Lu1205), and 83-2c, a cell strain cloned from metastatic melanoma. Four endpoints were evaluated in ultraviolet B-treated cells: annexin V, human leukocyte antigen-DR; E-cadherin, and N-cadherin. Annexin V was induced by nimesulide, 4-hydroxyphenylretinamide, and difluoromethylornithine in ultraviolet-B-treated radial growth-phase-like melanoma cells. None of the agents inhibited human leukocyte antigen-DR expression in ultraviolet-B-treated radial growth-phase-like melanoma cells, the only cells that strongly expressed human leukocyte antigen-DR. E-cadherin was overexpressed only in radial growthphase-like melanoma cells relative to melanocytes, and ultraviolet B exposure dramatically reduced this expression. E-cadherin was only induced by difluoromethylornithine in ultraviolet-B-treated radial growth-phase-like melanoma cells. N-cadherin was overexpressed in all melanoma cell lines relative to melanocytes. In this study, all candidate preventive agents inhibited N-cadherin in ultraviolet B-treated radial growth-phase-like melanoma cells. Four agents inhibited N-cadherin in ultraviolet B-treated vertical growth-phaselike melanoma cells. The mean ratios of N-cadherin to E-cadherin levels and specific endpoint responses for both the radial growth-phase-like melanoma and vertical growth-phase-like melanoma cells were used to rank the agents. Agents were evaluated at clinically relevant concentrations. The rankings were difluoromethylornithine > 4-hydroxyphenylretinamide > nimesulide > 9-cis-retinoic acid > polyphenon E. Diphenylhydramine, D-mannitol, and nordihydroguaiaretic acid were inactive. The results of these initial studies suggest that ultraviolet-B-treated radial growth-phase-like melanoma cells are the most responsive to chemopreventive agents, and may be the cell line of choice for screening melanoma prevention agents.
The human epidermal cell (HEC) assay, which uses carcinogen exposed normal skin keratinocytes to screen for cancer prevention efficacy, was used to screen possible preventive agents. The endpoints measured were inhibition of carcinogen-induced growth and induction of involucrin, an early marker of differentiation. Sixteen of twenty agents (apigenin, apomine, budesonide, N-(2-carboxyphenyl)retinamide, ellagic acid, ibuprofen, indomethacin, melatonin, (-)-2-oxo-4-thiazolidine carboxylic acid, polyphenon E, resveratrol, beta-sitosterol, sulfasalazine, vitamin E acetate, and zileuton) were positive in at least one of the two assay endpoints. Four agents (4-methoxyphenol, naringenin, palmitoylcarnitine chloride, and silymarin) were negative in the assay. Nine of the sixteen agents were positive for both endpoints. Agents that showed the greatest response included: ellagic acid > budesonide, ibuprofen > apigenin, and quinicrine dihydrochloride. Fifty-eight of sixty-five agents that have been evaluated in the HEC assay have also been evaluated in one or more rodent bioassays for cancer prevention and several are in clinical trials for cancer prevention. The assay has an overall predictive accuracy of approximately 91.4% for efficacy in rodent cancer prevention irrespective of the species used, the tissue model, or the carcinogen used. Comparison of the efficacious concentrations in vitro to plasma levels in clinical trials show that concentrations that produced efficacy in the HEC assay were achieved in clinical studies for 31 of 33 agents for which plasma levels and/or C(max) levels were available. For two agents, 9-cis-retinoic acid (RA) and dehydroepiandrosterone (DHEA), the plasma levels greatly exceeded the highest concentration (HC) found to have efficacy in vitro. Thus, the HEC assay has an excellent predictive potential for animal efficacy and is responsive at clinically achievable concentrations.
The Human Epithelial Cell Cytotoxicity (HECC) Assay (Meth Cell Sci, 22: 17-24, 2000) has been modified to include three additional cell lines and to allow protocol adjustments for slow growing cell lines. This manuscript presents methods using human epithelial cells from ten different normal human tissues including: skin, mammary, prostate, renal, bronchial, lung, oral, ecto-cervix, colon, and liver. The HECC Assay can also be used to evaluate other types of drugs, personal care products, environmental chemicals, and potential toxicants. Human epithelial cells at an early passage are seeded into multi-well dishes. The cells are exposed to multiple concentrations of each test agent. A preliminary assay using an exposure of five days at 1 mM (if soluble) and four log dilutions is used to determine the highest concentration for the HECC Assay. In the HECC Assay, cultures are exposed for three to four days. Following the exposure period, endpoint measurements for inhibition of growth, mitochondrial function, and PCNA (proliferating cell nuclear antigen) expression or albumin synthesis (hepatocytes) are made. Data are analyzed to determine the concentration that inhibited an endpoint by 50 percent (TC(50)) for each agent in each target epithelial cell line or culture and the data are compared to determine the relative sensitivity of each epithelial cell line to the test agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.