The purpose of this study was to evaluate the muscle synergy of collegiate rowers during 6 min maximal rowing on different stretcher mechanisms: fixed (FE) and slides ergometer (SE). The association of muscle synergy to rowing economy and physiological variables was further quantify by statistical analysis. Method: Ten collegiate rowers were recruited at the end of their competitive season. Muscle synergy was extracted from 16 rowing specific muscles using principal component analysis with varimax rotation. 6 min maximal rowing test was performed on Concept 2 FE and SE. Rowing performance and physiological variables were analyzed. Results: Rowers showed similar rowing performance on FE and SE in terms of total distance covered. Rowers rowed faster at shorter strokes when rowing on SE compared than rowing on FE. Greater maximal heart rate, energy expenditure and rowing economy were achieved on SE rowing. Three muscle synergies were extracted in both rowing conditions. Significant association was found between Synergy #1 and rowing economy. Discussion: Muscle synergy was robust between two rowing conditions. Rowing economy was highly associated with muscle synergy. As there was no significant difference in muscle synergy pattern and rowing performance during rowing on FE and SE, both ergometers could be utilized by experienced rowers.
Background Due to the pain caused by knee injuries, low-load resistance training with blood flow restriction (L-BFR) may be a potential adjuvant therapeutic tool in the rehabilitation of knee injuries. This review aimed to analyze the effectiveness of L-BFR training modality in knee rehabilitation. Design A meta-analysis was conducted to determine the potential impact of blood flow restriction on patients with knee injuries. PubMed, EBSCO, and Web of Science databases were searched for eligible studies from January 2000 until January 2020. The mean differences of the data were analyzed using Revman 5.3 software with a 95% confidence interval. Results Nine studies fulfilled the inclusion criteria. These studies involved 179 patients who received L-BFR, 96 patients who underwent high-load resistance training, and another 94 patients who underwent low-load resistance training. The analysis of pooled data showed that patients in both the L-BFR (standardized mean difference, 0.83 [0.53, 1.14], P < 0.01) and high-load resistance training (standardized mean difference, −0.09 [−0.43, 0.24], P = 0.58) groups experienced an increase in muscle strength after the training. In addition, pain score was significantly reduced in the L-BFR group compared with the other two groups (standardized mean difference, −0.61 [−1.19, −0.03], P = 0.04). Conclusions Muscle strength increased after L-BFR and high-load resistance training compared with low-load resistance training. Furthermore, pain score was significantly reduced after L-BFR. Hence, L-BFR is a potential intervention to be applied in rehabilitation of knee injuries.
The systematic review aimed to analyze the effects of resistance training in knee osteoarthritis (OA) rehabilitation from a biomechanical perspective. A meta-analysis was performed to determine the potential benefits of resistance training on patients with knee OA. Relevant studies based on the inclusion and exclusion criteria were selected from CENTRAL, PubMed, Scopus, and Web of Science databases inception to August 2020. Outcome measures included gait velocity and knee adduction moment (KAM). The mean differences of the data with a 95% confidence interval were analyzed using STATA 15.1 software The search identified eight studies that satisfied all the inclusion criteria, in which 164 patients were involved in gait velocity studies and another 122 patients were part of KAM studies. Analysis of the pooled data showed that resistance training significantly improved the gait velocity in patients with knee OA (p < 0.01, z = 2.73), ES (95% CI) = 0.03 (0.01, 0.06) m/s. However, resistance training had no significant effect on improving KAM in patients with knee OA (p = 0.98, z = 0.03), ES (95% CI) = 0.00 (− 0.16, 0.16) percentage of body weight × height (%BW × Ht). Therefore, resistance training may enhance gait velocity but not KAM in knee OA patients. The protocol was registered at PROSPERO (registration number: CRD42020204897).
Study DesignComparative cross-sectional study.PurposeWe measured the vertical ground reaction force (vGRF) of the hip, knee, and ankle joints during normal gait in normal patients, adolescent idiopathic scoliosis (AIS) patients with a Cobb angle <40° and in AIS patients with spinal fusion. We aimed to investigate whether vGRF in the aforementioned joints is altered in these three groups of patients.Overview of LiteraturevGRF of the lower limb joints may be altered in these groups of patients. Although it is known that excessive force in the joints may induce early arthritis, there is limited relevant information in the literatures.MethodsWe measured vGRF of the hip, knee, and ankle joints during heel strike, early stance, mid stance, and toe-off phases in normal subjects (group 1, n=14), AIS patients with Cobb angle <40° (group 2, n=14), and AIS patients with spinal fusion (group 3, n=13) using a gait analysis platform. Fifteen auto-reflective tracking markers were attached to standard anatomical landmarks in both the lower limbs. The captured motion images were used to define the orientations of the body segments and force exerted on the force plate using computer software. Statistical analysis was performed using independent t-test and analysis of variance to examine differences between the right and left sides as well as those among the different subject groups.ResultsThe measurements during the four gait phases in all the groups did not show any significant difference (p>0.05). In addition, no significant difference was found in the vGRF measurements of all the joints among the three groups (p>0.05).ConclusionsA Cobb angle <40° and spinal fusion did not significantly create imbalance or alter vGRF of the lower limb joints in AIS patients.
Objectives The purpose of this study was to investigate the effect of transverse plane foot position on lower limb kinematics during a single leg squat. Methods This was a cross-sectional study conducted among highly-trained male athletes. Only participants who showed normal knee valgus during a drop landing screening test were recruited. Twelve junior athletes performed single leg squats while maintaining a knee flexion angle of 60°. The squats were executed in three foot positions: neutral (0°), adduction (−10°), and abduction (+10°). Three-dimensional motion analysis was used to capture the lower extremity kinematics of the participants’ preferred limb. The hip and knee kinematics in the sagittal, frontal, and transverse planes during squatting were compared across the three foot positions using one-way ANOVA. Results The participants showed a normal range of dynamic knee valgus (5.3°±1.6). No statistically significant differences were observed in hip flexion (p = 0.322), adduction (p = 0.834), or internal rotation (p = 0.967) across different foot positions. Similarly, no statistically significant differences were observed in knee flexion (p = 0.489), adduction (p = 0.822), or internal rotation (p = 0.971) across different foot positions. Conclusion Small changes in transverse plane foot position do not affect lower extremity kinematics during single leg squat in highly trained adolescent males with normal dynamic knee valgus. Our findings may provide guidance on safer techniques for landing, pivoting, and cutting during training and game situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.