A simple, compact, and highly sensitive optical fiber directional bend sensor is presented. This device consists of a lateral-offset splicing joint and an up-taper formed through excessive fusion splicing method. The lateral-offset splicing breaks the cylindrical symmetry of the fiber and defines a pair of directions along which the bending response of the Mach-Zehnder interferometer transmission spectrum is different and thus could be used for bending vector measurement. For a curvature range from -3 to 3 m(-1), the bending sensitivities at 1463.86 nm and 1548.41 nm reach 11.987 nm/m(-1) and 8.697 nm/m(-1), respectively.
High-order orbital angular momentum (OAM) modes, namely, OAM and OAM, were generated and demonstrated experimentally by twisting a solid-core hexagonal photonic crystal fiber (PCF) during hydrogen-oxygen flame heating. Leaky orbital resonances in the cladding depend strongly on the twist rate and length of the helical PCF. Moreover, the generated high-order OAM mode could be a polarized mode. The secret of the successful observation of high-order modes is that leaky orbital resonances in the twisted PCF cladding have a high coupling efficiency of more than -20 dB.
A miniaturized tip Fabry-Perot interferometer (tip-FPI) is proposed for high-temperature sensing. It is simply fabricated for the first time by splicing a short length of microfiber (MF) to the cleaved end of a standard single mode fiber (SMF) with precise control of the relative cross section position. Such a MF acts as a Fabry-Perot (FP) cavity and serves as a tip sensor. A change in temperature modifies the length and refractive index of the FP cavity, and then a corresponding change in the reflected interference spectrum can be observed. High temperatures of up to 1000 °C are measured in the experiments, and a high sensitivity of 13.6 pm/°C is achieved. This compact sensor, with tip diameter and length both of tens of microns, is suitable for localized detection, especially in harsh environments.
High-dimensional entanglement has demonstrated potential for increasing channel capacity and resistance to noise in quantum information processing. However, its distribution is a challenging task, imposing a severe restriction on its application. Here we report the first distribution of threedimensional orbital angular momentum (OAM) entanglement via a 1-km-long optical fibre. Using an actively-stabilising phase precompensation technique, we successfully transport one photon of a three-dimensional OAM entangled photon pair through the fibre. The distributed OAM entangled state still shows a fidelity up to 71% with respect to the three-dimensional maximal-entangledstate (MES). In addition, we certify that the high-dimensional quantum entanglement survives the transportation by violating a generalised Bell inequality, obtaining a violation of ∼ 3 standard deviations with I3 = 2.12 ± 0.04. The method we developed can be extended to higher OAM dimension and larger distances in principle. Our results make a significant step towards future OAM-based high-dimensional long distance quantum communication. *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.