(SPB) or y.y.kim@leeds.ac.uk (YYK). 2Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unitmineral single crystals containing embedded macromolecules -remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite.We analyzed lattice distortions in these model crystals by using x-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.3 Biominerals such as bones, teeth and seashells are characterized by properties optimized for their functions. Despite being formed from brittle minerals and flexible polymers, nature demonstrates that it is possible to generate materials with strengths and toughnesses appropriate for structural applications 1 . At one level, the mechanical properties of these hierarchically structured materials are modelled as classical composites consisting of a mineral phase embedded in an organic matrix 2 . However, the single crystal mineral building blocks of biominerals are also composites 3 , containing both aggregates of biomacromolecules as large as 20 nm 4,5 and inorganic impurities 6,7 . While it should be entirely possible to employ this simple biogenic strategy in materials synthesis 8,9 , the strengthening and toughening mechanisms that result from these inclusions are still poorly understood 10,11 . This work addresses this challenge by analyzing hardening mechanisms in a simple model biomineral system: calcite single crystals containing known amounts of amino acids. We report synthetic calcite crystals with hardnesses equivalent to those of their biogenic counterparts, and offer a detailed explanation for the observed hardening.Since plastic deformation in single crystals occurs by the motion of dislocations, hardness is enhanced by features that inhibit dislocation motion. The mechanisms by which guest species may harden ionic single crystals generally fall into two categories. Second phase particles directly block dislocation motion, requiring a dislocation to either cut through (shear) a particle or bypass it by a diffusive process to keep going 12 . Solutes (point defects) do not directly block dislocation motion, but the stress fields of the dislocations interact with those associated with misfitting solutes, retarding dislocation motion 12 . Biominerals, notably calcite, often deform plastically by twinning 11 , but since twins grow by motion of "twinning dislocations" 13 , these concep...
While osteoporosis is known to alter bone tissue composition, the effects of such compositional changes on tissue material properties have not yet been examined. The natural gradient in tissue mineral content arising from skeletal appositional growth provides a basic model for investigation of relationships between tissue composition and mechanical properties. The purpose of this study was to examine the effects of tissue age on bone tissue composition and nanomechanical properties. The nanomechanical properties and composition of regions of differing tissue age were characterized in the femoral cortices of growing rats using nanoindentation and Raman spectroscopy. In addition, spatial maps of the properties of periosteal tissue were examined to investigate in detail the spatial gradients in the properties of newly formed tissue. Newly formed tissue (0–4 d) was 84% less stiff and had 79% lower mineral:matrix ratio than older intracortical (15–70 d) tissue. Tissue modulus, hardness, mineral:matrix ratio, and carbonate:phosphate ratio increased sharply with distance from the periosteum and attained the modulus and mineral content of intracortical tissue within four days of formation. The mineral:matrix ratio explained 54% and 62% of the variation in tissue indentation modulus and hardness, respectively. Our data demonstrate significant variations in tissue mechanical properties with tissue age and relate mechanical properties to composition at the microscale.
This article describes an experimentally versatile strategy for producing inorganic/organic nanocomposites, with control over the microstructure at the nano-and mesoscales. Taking inspiration from biominerals, CaCO 3 is coprecipitated with anionic diblock copolymer worms or vesicles to produce single crystals of calcite occluding a high density of the organic component. This approach can also be extended to generate complex structures in which the crystals are internally patterned with nano-objects of differing morphologies. Extensive characterization of the nanocomposite crystals using high resolution synchrotron powder X-ray diffraction and vibrational spectroscopy demonstrates how the occlusions affect the short and long-range order of the crystal lattice. By comparison with nanocomposite crystals containing latex particles and copolymer micelles, it is shown that the effect of these occlusions on the crystal lattice is dominated by the interface between the inorganic crystal and the organic nano-objects, rather than the occlusion size. This is supported by in situ atomic force microscopy studies of worm occlusion in calcite, which reveal fl attening of the copolymer worms on the crystal surface, followed by burial and void formation. Finally, the mechanical properties of the nanocomposite crystals are determined using nanoindentation techniques, which reveal that they have hardnesses approaching those of biogenic calcites.
Thermal stresses in thin Cu films on silicon substrates were examined as a function of film thickness and presence of a silicon nitride passivation layer. At room temperature, tensile stresses increased with decreasing film thickness in qualitative agreement with a dislocation constraint model. However, in order to predict the stress levels, grain-size strengthening, which is shown to follow a Hall–Petch relation, must be superimposed. An alternative explanation is strain-hardening due to the increase in dislocation density, which was measured by x-ray diffraction. At 600 °C, the passivation increases the stress by an order of magnitude; this leads to a substantially different shape of the stress-temperature curves, which now resemble those of aluminum with only a native oxide layer. The effect of passivation is shown to be very sensitive to the deposition and test conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.