DC fault protection is one challenge impeding the development of multi-terminal DC grids. The absence of manufacturing and operational standards has led to many pointto-point HVDC links built at different voltage levels, which creates another challenge. Therefore, the issues of voltage matching and DC fault isolation are undergoing extensive research and are addressed in this paper. A quasi two-level operating mode of the modular multilevel converter is proposed, where the converter generates a square wave with controllable dv/dt by employing the cell voltages to create transient intermediate voltage levels. Cell capacitance requirements diminish and the footprint of the converter is reduced. The common-mode DC component in the arm currents is not present in the proposed operating mode. The converter is proposed as the core of a DC to DC transformer where two converters operating in the proposed mode are coupled by an AC transformer for voltage matching and galvanic isolation. The proposed DC transformer is shown to be suitable for high-voltage high-power applications due to the low switching frequency, high efficiency, modularity, and reliability. The DC transformer facilitates DC voltage regulation and near instant isolation of DC faults within its protection zone. Analysis and simulations confirm these capabilities in a system-oriented approach.
Detection of rotor slot and other eccentricity related harmonics in the line current of a three phase induction motor is important both from the viewpoint of sensorless speed estimation as well as eccentricity related fault detection. However, it is now clear that not all three phase induction motors are capable of generating such harmonics in the line current. Recent research has shown that the presence of these harmonics is primarily dependent on the number of rotor slots and the number of fundamental pole pairs of the machine. While the number of fundamental pole pairs of a three phase induction motor usually is within one to four (higher pole pairs are generally avoided due to increased magnetizing current), the number of rotor slots can vary widely. The present paper investigates this phenomenon further and obtains a hitherto nebulous theoretical basis for the experimentally verified results. Detailed coupled magnetic circuit simulation results are presented for a four pole, three phase induction motor with 44, 43, and 42 rotor slots under healthy, static, dynamic and mixed eccentricity conditions. The simulation is flexible enough to accommodate other pole numbers also. These simulations are helpful in quantifying the predicted harmonics under different combinations of load, pole pair numbers, rotor slots and eccentricity conditions, thus making the problem easier for drive designers or diagnostic tools' developers. Data from three different induction machines, namely, a 4 pole, 44 bar, 3 HP, a 4 pole, 28 bar, 3 HP, and a 2 pole, 39 bar, 100 HP motor have been used to verify the results experimentally. The simulation and the experimental results clearly validate the theoretical findings put forward in this paper.
Conventional dual-active bridge topologies provide galvanic isolation and soft-switching over a reasonable operating range without dedicated resonant circuits. However, scaling the two-level dual-active bridge to higher dc voltage levels is impeded by several challenges among which the high dv/dt stress on the coupling transformer insulation. Gating and thermal characteristics of series switch arrays add to the limitations. To avoid the use of standard bulky modular multilevel bridges, this paper analyzes an alternative modulation technique, where staircase approximated trapezoidal voltage waveforms are produced; thus, alleviating developed dv/dt stresses. Modular design is realized by the utilization of half-bridge chopper cells. This way the analyzed dc-dc transformer employs modular multilevel converters operated in a new mode with minimal common-mode arm currents, as well as reduced capacitor size, hence reduced cell footprint. Suitable switching patterns are developed and various design and operation aspects are studied. Soft-switching characteristics will be shown to be comparable to those of the two-level dual-active bridge. Experimental results from a scaled test rig validate the presented concept. Index Terms-DC fault, dc/dc power conversion, dc transformer, dual-active bridge, modular multilevel converter (MMC).
NOMENCLATURE T tVoltage transit time between the two dc rails. N Number of cells per arm (or series IGBTs per valve). N s Number of ac voltage steps. T d Dwell time spent in each voltage level. V dc DC-link voltage. m Modulation index. f s , ω s Fundamental frequency (f s = 1/T s ). t d(off ) IGBT turn-off delay time. t f IGBT fall time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.