Bovine embryos are typically cultured at reduced oxygen tension to lower the impact of oxidative stress on embryo development. However, oocyte in vitro maturation (IVM) is performed at atmospheric oxygen tension since low oxygen during maturation has a negative impact on oocyte developmental competence. Lycopene, a carotenoid, acts as a powerful antioxidant and may protect the oocyte against oxidative stress during maturation at atmospheric oxygen conditions. Here, we assessed the effect of adding 0.2 μM lycopene (antioxidant), 5 μM menadione (pro-oxidant), and their combination on the generation of reactive oxygen species (ROS) in matured oocytes and the subsequent development, quality, and transcriptome of the blastocysts in a bovine in vitro model. ROS fluorescent intensity in matured oocytes was significantly lower in the lycopene group, and the resulting embryos showed a significantly higher blastocyst rate on day 8 and a lower apoptotic cell ratio than all other groups. Transcriptomic analysis disclosed a total of 296 differentially expressed genes (Benjamini–Hochberg-adjusted p < 0.05 and ≥ 1-log2-fold change) between the lycopene and control groups, where pathways associated with cellular function, metabolism, DNA repair, and anti-apoptosis were upregulated in the lycopene group. Lycopene supplementation to serum-free maturation medium neutralized excess ROS during maturation, enhanced blastocyst development and quality, and modulated the transcriptomic landscape.
Excessive production and accumulation of reactive oxygen species (ROS) may cause embryo damage associated with oxidative stress. Lycopene, a natural antioxidant, can scavenge singlet oxygen and is one of the most effective antioxidants among carotenoids. We evaluated the effects of supplementation of lycopene (antioxidant), menadione (prooxidant), and their combination during invitro oocyte maturation on ROS generation in matured oocytes and the quality of vitrified-warmed embryos. Cumulus–oocyte complexes, collected from the slaughterhouse, were matured in groups of 60 in 500μL of TCM-199 medium+50mg mL−1 gentamycin+20ng mL−1 epidermal growth factor, for 22h at 38.5°C in 5% CO2 in air and then supplemented with (1) 0.2μM lycopene, (2) 5μM menadione, (3) 0.2μM lycopene+5μM menadione (L+M), or (4) not supplemented (control). Fertilization and embryo culture were performed similarly for all the groups. In the first experiment, ROS measurement (n=236; via fluorescent microscopy) was performed in denuded, matured oocytes incubated in 5μM CellROX® Green (ThermoFisher Scientific) for 1h. Fluorescent intensity was measured in Image-J. In the second experiment, embryos in the blastocyst stage (n=143) were vitrified as previously described by Ortiz-Escribano et al. (2017 Biol. Reprod. 96, 288-301). Vitrified blastocysts were then warmed and washed in decreasing concentrations of sucrose and incubated for 2 days in culture medium [50µL of synthetic oviductal fluid (SOF)+(5g mL−1 insulin, 5g mL−1 transferrin, 5ng mL−1 selenium)]. The quality of vitrified-warmed blastocysts was assessed using a differential staining as described by Wydooghe et al. (2011 Anal. Biochem. 416, 228–230). The effects of pro- and antioxidant supplementation on oocyte fluorescent intensity and embryo quality parameters were fitted in linear mixed-effects models, and results are expressed as least squares means and standard errors. The fluorescent intensity for ROS was lower (P<0.05) in lycopene (10.06±2.92) than in menadione (16.8±2.92). No differences (P>0.05) in ROS intensity values were found among the other groups [control (13.5±2.92) and L+M (13.7±2.90)]. Total cell number (TCN) was similar (P>0.05) in lycopene (153±2.95), L+M (143±4.59), and control (145±3.67) but lower (P<0.05) in menadione (134±6.08). Lesser numbers of apoptotic cells (AC) and AC/TCN values (P<0.05) were recorded in lycopene (4.12±3.07 and 2.71±2.21) compared with control (6.18±3.82 and 4.31±2.75), L+M (6.00±4.79 and 4.22±3.45), and menadione (7.75±6.33 and 5.82±4.56). For the remaining embryo quality parameters, no differences were found (P>0.05). In conclusion, lycopene supplementation during invitro oocyte maturation effectively scavenged free radicals, lowering oxidative stress and improving embryo quality post-vitrification and warming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.